Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A common task for many computational methods is the need to accurately compute the minimum binding energy - the adsorption energy - for an adsorbate and a catalyst surface of interest. Traditionally, the identification of low energy adsorbate-surface configurations relies on heuristic methods and researcher intuition. As the desire to perform high-throughput screening increases, it becomes challenging to use heuristics and intuition alone. In this paper, we demonstrate machine learning potentials can be leveraged to identify low energy adsorbate-surface configurations more accurately and efficiently. Our algorithm provides a spectrum of trade-offs between accuracy and efficiency, with one balanced option finding the lowest energy configuration, within a 0.1 eV threshold, 86.63% of the time, while achieving a 1387x speedup in computation. To standardize benchmarking, we introduce the Open Catalyst Dense dataset containing nearly 1,000 diverse surfaces and 87,045 unique configurations.
translated by 谷歌翻译
建模原子系统的能量和力是计算化学中的一个基本问题,有可能帮助解决世界上许多最紧迫的问题,包括与能源稀缺和气候变化有关的问题。这些计算传统上是使用密度函数理论进行的,这在计算上非常昂贵。机器学习有可能从天数或小时到秒从天数大幅提高这些计算的效率。我们建议球形通道网络(SCN)对原子能量和力进行建模。 SCN是一个图神经网络,节点代表原子并边缘其相邻原子。原子嵌入是使用球形谐波表示的一组球形函数,称为球形通道。我们证明,通过基于3D边缘方向旋转嵌入式,可以在保持消息的旋转模糊性的同时使用更多信息。虽然均衡性是理想的属性,但我们发现,通过在消息传递和聚合中放松这种约束,可以提高准确性。我们在大规模开放催化剂2020数据集中展示了最新的结果,这些数据集在能源和力量预测中,用于许多任务和指标。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
近年来,分子模拟数据集的出现是大数量级,更多样化的阶。这些新数据集在复杂性的四个方面有很大差异:1。化学多样性(不同元素的数量),2。系统大小(每个样品原子数),3。数据集大小(数据样本数)和4.域移动(培训和测试集的相似性)。尽管存在这些较大的差异,但在狭窄和狭窄的数据集上的基准仍然是证明分子模拟的图形神经网络(GNN)进展的主要方法,这可能是由于较便宜的训练计算要求所致。这就提出了一个问题 - GNN在小和狭窄的数据集上的进展是否转化为这些更复杂的数据集?这项工作通过首先根据大型开放催化剂2020(OC20)数据集开发Gemnet-OC模型来研究这个问题。 Gemnet-OC的表现优于OC20上的先前最新ART,同时将训练时间减少10倍。然后,我们比较了18个模型组件和超参数选择对多个数据集的性能的影响。我们发现,根据用于做出模型选择的数据集,所得模型将大不相同。为了隔离这种差异的来源,我们研究了OC20数据集的六个子集,这些子集分别测试了上述四个数据集方面的每个数据集。我们发现,OC-2M子集的结果与完整的OC20数据集良好相关,同时训练得更便宜。我们的发现挑战了仅在小型数据集上开发GNN的常见做法,但突出了通过中等尺寸的代表性数据集(例如OC-2M)以及Gemnet-oc等高效模型来实现快速开发周期和可推广结果的方法。我们的代码和预估计的模型权重是开源的。
translated by 谷歌翻译
Driving through pothole infested roads is a life hazard and economically costly. The experience is even worse for motorists using the pothole filled road for the first time. Pothole-filled road networks have been associated with severe traffic jam especially during peak times of the day. Besides not being fuel consumption friendly and being time wasting, traffic jams often lead to increased carbon emissions as well as noise pollution. Moreover, the risk of fatal accidents has also been strongly associated with potholes among other road network factors. Discovering potholes prior to using a particular road is therefore of significant importance. This work presents a successful demonstration of sensor-based pothole mapping agent that captures both the pothole's depth as well as its location coordinates, parameters that are then used to generate a pothole map for the agent's entire journey. The map can thus be shared with all motorists intending to use the same route.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
我们提出了一种从图像中推断人类对象相互作用的不同3D模型的方法。考虑到人类如何与单个2D图像中复杂场景中的对象相互作用的推理是一项具有挑战性的任务,鉴于由于通过投影而导致信息丢失引起的歧义。此外,建模3D相互作用需要对各种对象类别和交互类型的概括能力。我们提出了一种对相互作用的动作条件建模,使我们能够在接触区域或3D场景几何形状上推断人类和物体的不同3D布置。我们的方法从大语言模型(例如GPT-3)中提取高级常识性知识,并将其应用于对人类对象相互作用的3D推理。我们的关键见解是从大语言模型中提取的先验可以帮助从纹理提示中推理人类对象联系人。我们定量评估大型人类对象交互数据集上推断的3D模型,并显示我们的方法如何导致更好的3D重建。我们进一步评估方法对真实图像的有效性,并证明其对互动类型和对象类别的普遍性。
translated by 谷歌翻译
我们介绍了TemPCLR,这是一种针对3D手重建的结构化回归任务的新的时代对比学习方法。与以前的手部姿势估计方法相抵触方法不同,我们的框架考虑了其增强方案中的时间一致性,并说明了沿时间方向的手部姿势的差异。我们的数据驱动方法利用了未标记的视频和标准CNN,而无需依赖合成数据,伪标签或专业体系结构。我们的方法在HO-3D和Freihand数据集中分别将全面监督的手部重建方法的性能提高了15.9%和7.6%,从而确立了新的最先进的性能。最后,我们证明了我们的方法会随着时间的推移产生更平滑的手部重建,并且与以前的最新作品相比,对重型的闭塞更为强大,我们在定量和定性上表现出来。我们的代码和模型将在https://eth-ait.github.io/tempclr上找到。
translated by 谷歌翻译
自然语言处理的最新进展在文本分析和语言理解模型中产生了许多令人兴奋的发展。但是,这些模型也可以用于跟踪人们,引起严重的隐私问题。在这项工作中,我们调查了个人可以在使用社交媒体平台时避免被这些模型检测到的事情。我们将调查在两项曝光危险任务,立场检测和地理标记中进行。我们探索了各种用于修改文本的简单技术,例如用显着词,​​释义和添加虚拟社交媒体帖子插入错别字。我们的实验表明,基于BERT的模型的性能因错别字而被罚款以进行立场检测,但不受释义的影响。此外,我们发现错别字对最先进的地理参考模型的影响最小,因为它们对社交网络的依赖增加了。但是,我们表明用户可以通过与不同的用户互动来欺骗这些模型,从而将其绩效降低了近50%。
translated by 谷歌翻译
车祸(IOV)可以促进连接车辆(CV),自动驾驶汽车(AV)和其他IOV实体之间的无缝连通性。 IOV网络的入侵检测系统(IDS)可以依靠机器学习(ML)来保护车辆内网络免受网络攻击。基于区块链的联合森林(BFF)可用于根据IOV实体的数据训练ML模型,同时保护数据的机密性并降低对数据篡改的风险。但是,以这种方式创建的ML模型仍然容易受到逃避,中毒和探索性攻击的影响。本文研究了各种可能的对抗性示例对BFF-ID的影响。我们提出了整合统计检测器来检测和提取未知的对抗样品。通过将未知检测的样品包括在检测器的数据集中,我们使用附加模型来增强BFF-ID,以检测原始已知攻击和新的对抗性输入。统计对手检测器以50和100个输入样本的样本量确信对对抗性示例。此外,增强的BFF-IDS(BFF-IDS(AUG))成功地减轻了以上96%的精度。通过这种方法,每当检测到对抗样本并随后采用BFF-ID(AUG)作为主动安全模型时,该模型将继续在沙箱中增强。因此,统计对抗检测器的拟议集成以及随后使用检测到的对抗样本对BFF-ID的增强,为对抗性例子和其他未知攻击提供了可持续的安全框架。
translated by 谷歌翻译