当呈现新任务时,人类可以在构图上推理。先前的研究表明,适当的提示技术使大型语言模型(LLM)能够解决人工构图概括任务,例如扫描。在这项工作中,我们在更现实的语义解析任务中确定了更大的词汇,并完善这些提示技术来解决这些挑战。我们的最佳方法是基于最小的提示:它使用基于提示的句法解析分解问题,然后使用此分解来选择适当的示例并顺序生成语义分析。这种方法使我们能够为CFQ设置新的最新技术,同时仅需要传统方法使用的培训数据的1%。由于我们的方法的一般性,我们希望类似的努力将在其他任务和领域中带来新的结果,尤其是对于知识密集型应用程序。
translated by 谷歌翻译
We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.
translated by 谷歌翻译
从图像中学习代表,健壮和歧视性信息对于有效的人重新识别(RE-ID)至关重要。在本文中,我们提出了一种基于身体和手部图像的人重新ID的端到端判别深度学习的复合方法。我们仔细设计了本地感知的全球注意力网络(Laga-Net),这是一个多分支深度网络架构,由一个用于空间注意力的分支组成,一个用于渠道注意。注意分支集中在图像的相关特征上,同时抑制了无关紧要的背景。为了克服注意力机制的弱点,与像素改组一样,我们将相对位置编码整合到空间注意模块中以捕获像素的空间位置。全球分支机构打算保留全球环境或结构信息。对于打算捕获细粒度信息的本地分支,我们进行统一的分区以水平在Conv-Layer上生成条纹。我们通过执行软分区来检索零件,而无需明确分区图像或需要外部线索,例如姿势估计。一组消融研究表明,每个组件都会有助于提高拉加网络的性能。对四个受欢迎的人体重新ID基准和两个公开可用的手数据集的广泛评估表明,我们的建议方法始终优于现有的最新方法。
translated by 谷歌翻译
叙事中的事件可以通过其参与者的基本状态理解为一致的整体。通常,这些参与者在叙述中没有明确提及,而是通过常识性或推论填写。理解叙述的模型应该能够推断出这些隐性参与者状态,以及有关这些状态对叙事的影响的原因。为了促进这一目标,我们介绍了一个新的众包参与者指出的数据集意大利面。该数据集包含有效的,可推断的参与者状态;对国家的反事实扰动;如果反事实是真实的,那么故事的变化将是必要的。我们介绍了三项基于州的推理任务,这些任务测试了一个故事何时由故事启用,修改一个反事实状态的故事,并解释给定经过修订的故事的最有可能的状态变化。我们的基准测试实验表明,尽管当今的LLM能够在某种程度上推理有关州的推理,但仍有很大的改进空间,这表明了未来研究的潜在途径。
translated by 谷歌翻译
近年来,轨迹优化方法已在现实世界机器人上达到了出色的性能水平。这些方法在很大程度上依赖于动力学的准确分析模型,但是物理世界的某些方面只能在有限的程度上捕获。另一种方法是利用机器学习技术从数据中学习系统的可区分动力学模型。在这项工作中,我们使用轨迹优化和模型学习,在没有精确的动力学分析模型的情况下,使用机器人系统执行高度动态和复杂的任务。我们表明,从仅在两个不同的机器人上的25分钟相互作用的数据中收集的数据,神经网络可以准确地对高度非线性行为进行建模:(i)波士顿动力学点和(ii)RC CAR。此外,我们使用神经网络的梯度来执行基于梯度的轨迹优化。在我们的硬件实验中,我们证明了我们所学的模型可以代表现场和无线电控制(RC)汽车的复杂动力学,并与轨迹优化方法结合使用良好的性能。
translated by 谷歌翻译
现实世界中的时间序列数据集经常违反预测的标准监督学习的假设 - 它们的分布会随着时间的推移而发展,从而使传统的培训和模型选择程序均优化。在本文中,我们提出了一种新颖的方法,即自适应预测(SAF),以修改时间序列预测模型的培训,以通过此类非平稳时间序列数据提高其在预测任务上的性能。 SAF在基于“背景”的预测之前集成了自适应阶段,即在时间后退预测掩盖的输入。这是一种测试时间培训的形式,在执行预测任务之前,在测试样本上会在测试样本上创建一个自我监督的学习问题。通过这种方式,我们的方法可以有效地适应编码表示的分布,从而导致卓越的概括。 SAF可以与任何基于经典的编码器码头架构架构(例如经常性神经网络或基于注意力的体系结构)集成。关于众所周知,众所周知的非统计数据(例如医疗保健和金融)的域中的合成和现实数据集,我们证明了SAF在提高预测准确性方面具有重大好处。
translated by 谷歌翻译
在高风险领域(人们的生计受到影响)中,机器学习的日益增长的使用迫切需要解释和公平的算法。在这些设置中,此类算法的准确性也至关重要。考虑到这些需求,我们提出了一个混合整数优化(MIO)框架,用于学习具有固定深度的最佳分类树,可以通过任意域特定的公平约束来方便地增强。我们基于在流行数据集上建造公平树木的最先进方法基准测试;鉴于固定的歧视阈值,我们的方法平均将样本外(OOS)的精度提高了2.3个百分点,并在88.9%的实验上获得了更高的OOS精度。我们还将各种算法公平概念纳入我们的方法中,展示其多功能建模能力,使决策者可以微调准确性和公平性之间的权衡。
translated by 谷歌翻译
在本文中,我们使用从低成本消费者RGB-D传感器获取的RGB-D数据提出蘑菇检测,定位和3D姿势估计算法。我们使用RGB和深度信息进行不同的目的。从RGB颜色,我们首先提取蘑菇的初始轮廓位置,然后将初始轮廓位置和原始图像提供给蘑菇分割的活动轮廓。然后将这些分段蘑菇用作每个蘑菇检测的圆形Hough变换的输入,包括其中心和半径。一旦RGB图像中的每个蘑菇的中心位置都是已知的,我们就会使用深度信息在3D空间中定位它,即在世界坐标系中。在每个蘑菇的检测到的中心缺少深度信息的情况下,我们从每个蘑菇的半径内的最近可用深度信息估计。我们还使用预先准备的直立蘑菇模型来估计每个蘑菇的3D姿势。我们使用全球注册,然后是本地精炼登记方法进行此3D姿势估计。从估计的3D姿势,我们仅使用四元素表示的旋转部分作为每个蘑菇的方向。这些估计(X,Y,Z)位置,直径和蘑菇的方向用于机器人拣选应用。我们对3D印刷和真正的蘑菇进行了广泛的实验,表明我们的方法具有有趣的性能。
translated by 谷歌翻译
概率数值方法(PNMS)通过概率推断解决数值问题。它们已开发用于线性代数,优化,集成和微分方程模拟。PNMS自然地纳入了关于问题的先前信息,并通过有限计算资源以及随机输入来量化不确定性。在本文中,我们提出了probnum:提供最先进的概率数值求解器的Python库。Probnum通过模块化设计以及包装器,可以通过模块化设计来定制PNMS的定制组成,以供自卸使用。在线,在线,文档,开发人员指南和基准,请访问www.probnum.org。
translated by 谷歌翻译
在本文中,我们提出了一种新的手工识别方法,以便犯罪调查,因为手形象往往是在严重犯罪如性虐待中的唯一可用信息。我们提出的方法,使用注意网络(MBA-Net)多分支,除了全球(不受注意)分支之外,还包含了分支机构中的通道和空间注意模块,以捕获歧视特征学习的全局结构信息。注意力模块侧重于手形图像的相关特征,同时抑制无关背景。为了克服注意力机制的弱点,等离性体到像素混洗,我们将相对位置编码集成到空间注意模块中以捕获像素的空间位置。对两个大型多民族和公共手部数据集进行广泛的评估表明,我们的提出方法实现了最先进的性能,超越了现有的基于手的识别方法。
translated by 谷歌翻译