Covid-19大流行是人类的祸害,宣称全世界超过500万人的生活。虽然疫苗正在全世界分布,但表观需要实惠的筛选技术,以便为无法获得传统医学的世界服务。人工智能可以提供利用咳嗽声音作为主要筛选模式的解决方案。本文介绍了多种模型,这些模型在学术文献目前呈现的最大评估数据集上取得了相对尊敬的性能。此外,我们还显示性能随着培训数据规模而增加,表明世界各地的数据收集,以帮助使用非传统方式对抗Covid-19大流行。
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
Rapid advancements in collection and dissemination of multi-platform molecular and genomics data has resulted in enormous opportunities to aggregate such data in order to understand, prevent, and treat human diseases. While significant improvements have been made in multi-omic data integration methods to discover biological markers and mechanisms underlying both prognosis and treatment, the precise cellular functions governing these complex mechanisms still need detailed and data-driven de-novo evaluations. We propose a framework called Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data (fiBAG), that allows simultaneous identification of upstream functional evidence of proteogenomic biomarkers and the incorporation of such knowledge in Bayesian variable selection models to improve signal detection. fiBAG employs a conflation of Gaussian process models to quantify (possibly non-linear) functional evidence via Bayes factors, which are then mapped to a novel calibrated spike-and-slab prior, thus guiding selection and providing functional relevance to the associations with patient outcomes. Using simulations, we illustrate how integrative methods with functional calibration have higher power to detect disease related markers than non-integrative approaches. We demonstrate the profitability of fiBAG via a pan-cancer analysis of 14 cancer types to identify and assess the cellular mechanisms of proteogenomic markers associated with cancer stemness and patient survival.
translated by 谷歌翻译
Recent increases in the computational demands of deep neural networks (DNNs) have sparked interest in efficient deep learning mechanisms, e.g., quantization or pruning. These mechanisms enable the construction of a small, efficient version of commercial-scale models with comparable accuracy, accelerating their deployment to resource-constrained devices. In this paper, we study the security considerations of publishing on-device variants of large-scale models. We first show that an adversary can exploit on-device models to make attacking the large models easier. In evaluations across 19 DNNs, by exploiting the published on-device models as a transfer prior, the adversarial vulnerability of the original commercial-scale models increases by up to 100x. We then show that the vulnerability increases as the similarity between a full-scale and its efficient model increase. Based on the insights, we propose a defense, $similarity$-$unpairing$, that fine-tunes on-device models with the objective of reducing the similarity. We evaluated our defense on all the 19 DNNs and found that it reduces the transferability up to 90% and the number of queries required by a factor of 10-100x. Our results suggest that further research is needed on the security (or even privacy) threats caused by publishing those efficient siblings.
translated by 谷歌翻译
The highest grossing media franchise of all times, with over \$90 billion in total revenue, is Pokemon. The video games belong to the class of Japanese Role Playing Games (J-RPG). Developing a powerful AI agent for these games is very hard because they present big challenges to MinMax, Monte Carlo Tree Search and statistical Machine Learning, as they are vastly different from the well explored in AI literature games. An AI agent for one of these games means significant progress in AI agents for the entire class. Further, the key principles of such work can hopefully inspire approaches to several domains that require excellent teamwork under conditions of extreme uncertainty, including managing a team of doctors, robots or employees in an ever changing environment, like a pandemic stricken region or a war-zone. In this paper we first explain the mechanics of the game and we perform a game analysis. We continue by proposing unique AI algorithms based on our understanding that the two biggest challenges in the game are keeping a balanced team and dealing with three sources of uncertainty. Later on, we describe why evaluating the performance of such agents is challenging and we present the results of our approach. Our AI agent performed significantly better than all previous attempts and peaked at the 33rd place in the world, in one of the most popular battle formats, while running on only 4 single socket servers.
translated by 谷歌翻译
Unlike tabular data, features in network data are interconnected within a domain-specific graph. Examples of this setting include gene expression overlaid on a protein interaction network (PPI) and user opinions in a social network. Network data is typically high-dimensional (large number of nodes) and often contains outlier snapshot instances and noise. In addition, it is often non-trivial and time-consuming to annotate instances with global labels (e.g., disease or normal). How can we jointly select discriminative subnetworks and representative instances for network data without supervision? We address these challenges within an unsupervised framework for joint subnetwork and instance selection in network data, called UISS, via a convex self-representation objective. Given an unlabeled network dataset, UISS identifies representative instances while ignoring outliers. It outperforms state-of-the-art baselines on both discriminative subnetwork selection and representative instance selection, achieving up to 10% accuracy improvement on all real-world data sets we use for evaluation. When employed for exploratory analysis in RNA-seq network samples from multiple studies it produces interpretable and informative summaries.
translated by 谷歌翻译
In this paper we present TruFor, a forensic framework that can be applied to a large variety of image manipulation methods, from classic cheapfakes to more recent manipulations based on deep learning. We rely on the extraction of both high-level and low-level traces through a transformer-based fusion architecture that combines the RGB image and a learned noise-sensitive fingerprint. The latter learns to embed the artifacts related to the camera internal and external processing by training only on real data in a self-supervised manner. Forgeries are detected as deviations from the expected regular pattern that characterizes each pristine image. Looking for anomalies makes the approach able to robustly detect a variety of local manipulations, ensuring generalization. In addition to a pixel-level localization map and a whole-image integrity score, our approach outputs a reliability map that highlights areas where localization predictions may be error-prone. This is particularly important in forensic applications in order to reduce false alarms and allow for a large scale analysis. Extensive experiments on several datasets show that our method is able to reliably detect and localize both cheapfakes and deepfakes manipulations outperforming state-of-the-art works. Code will be publicly available at https://grip-unina.github.io/TruFor/
translated by 谷歌翻译
Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.
translated by 谷歌翻译
From smoothly pursuing moving objects to rapidly shifting gazes during visual search, humans employ a wide variety of eye movement strategies in different contexts. While eye movements provide a rich window into mental processes, building generative models of eye movements is notoriously difficult, and to date the computational objectives guiding eye movements remain largely a mystery. In this work, we tackled these problems in the context of a canonical spatial planning task, maze-solving. We collected eye movement data from human subjects and built deep generative models of eye movements using a novel differentiable architecture for gaze fixations and gaze shifts. We found that human eye movements are best predicted by a model that is optimized not to perform the task as efficiently as possible but instead to run an internal simulation of an object traversing the maze. This not only provides a generative model of eye movements in this task but also suggests a computational theory for how humans solve the task, namely that humans use mental simulation.
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译