我们提出了多视图表演者(MVP) - 从一系列时间顺序的视图中完成3D形状完成的新体系结构。MVP通过使用称为表演者的线性注意变压器来完成此任务。我们的模型允许当前对场景的观察到以前的观察,以更准确地填充。过去观察的历史通过紧凑的关联内存来压缩,该记忆近似于现代连续的霍普菲尔德内存,但至关重要的是与历史长度无关。我们将模型与几个基线进行比较,以便随着时间的推移完成形状完成,这证明了MVP提供的概括。据我们所知,MVP是第一个多重视图体素重建方法,它不需要对多个深度视图进行注册,也需要第一个基于因果变压器的模型进行3D形状完成。
translated by 谷歌翻译
利益的现实世界任务通常由人类可读描述定义不足,并且没有预定义的奖励信号,除非它由人类设计师定义。相反,数据驱动的算法通常旨在解决特定的,狭义定义的任务,具有驱动代理学习的性能度量。在这项工作中,我们提出了赢得第一名的解决方案,并获得了2021个神经潮端竞赛Minerl Basalt挑战的最人性化的代理:从Minecraft中的人力反馈中学习,该参与者使用人类数据来解决仅限定义的四个任务通过自然语言描述,没有奖励功能。我们的方法使用可用的人类演示数据来培训仿制学习策略,以便导航和额外的人机反馈来训练图像分类器。然后将这些模块与估计的内径型图一起组合到基于人类的人类知识设计的状态机,该任务在自然等级中断和控制学习代理应该在任何瞬间遵循的宏观行为的控制中。我们将这种混合智能方法与端到端机器学习和纯工程解决方案进行比较,然后由人类评估符判断。 CodeBase可在https://github.com/viniciusguigo/kairos_minerl_basalt上获得。
translated by 谷歌翻译
强化学习(RL)代理商可以通过与环境进行交互来学习解决复杂的顺序决策任务。但是,样品效率仍然是一个重大挑战。在多目标RL领域中,需要代理以达到多个目标来解决复杂任务,提高采样效率可能尤其具有挑战性。另一方面,人类或其他生物代理商以更具战略方式学习此类任务,遵循随着难度水平的增加,以便逐步高效的学习进步。在这项工作中,我们提出了一种以自我监督方式使用动态距离功能(DDF)的自动目标生成方法。 DDF是一种函数,它预测马尔可夫决策过程(MDP)内的任何两个状态之间的动态距离。有了这个,我们在适当的难度水平下生成一个目标课程,以便在整个培训过程中有效地学习。我们在几个目标条件的机器人操纵和导航任务中评估这种方法,并在基线方法上显示出样本效率的改进,该方法仅使用随机目标采样。
translated by 谷歌翻译
Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings' state of conservation. For that reason, infrared thermography has been used as a powerful tool to characterize these buildings' state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this particular phase of this research project, we've used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in one particular building. The model's accuracy was compared between the MSX and thermal images acquired from two distinct thermal cameras and fused images (formed through multisource information) to test the influence of the input data and network on the detection results.
translated by 谷歌翻译
Rapid advancements in collection and dissemination of multi-platform molecular and genomics data has resulted in enormous opportunities to aggregate such data in order to understand, prevent, and treat human diseases. While significant improvements have been made in multi-omic data integration methods to discover biological markers and mechanisms underlying both prognosis and treatment, the precise cellular functions governing these complex mechanisms still need detailed and data-driven de-novo evaluations. We propose a framework called Functional Integrative Bayesian Analysis of High-dimensional Multiplatform Genomic Data (fiBAG), that allows simultaneous identification of upstream functional evidence of proteogenomic biomarkers and the incorporation of such knowledge in Bayesian variable selection models to improve signal detection. fiBAG employs a conflation of Gaussian process models to quantify (possibly non-linear) functional evidence via Bayes factors, which are then mapped to a novel calibrated spike-and-slab prior, thus guiding selection and providing functional relevance to the associations with patient outcomes. Using simulations, we illustrate how integrative methods with functional calibration have higher power to detect disease related markers than non-integrative approaches. We demonstrate the profitability of fiBAG via a pan-cancer analysis of 14 cancer types to identify and assess the cellular mechanisms of proteogenomic markers associated with cancer stemness and patient survival.
translated by 谷歌翻译
Recent increases in the computational demands of deep neural networks (DNNs) have sparked interest in efficient deep learning mechanisms, e.g., quantization or pruning. These mechanisms enable the construction of a small, efficient version of commercial-scale models with comparable accuracy, accelerating their deployment to resource-constrained devices. In this paper, we study the security considerations of publishing on-device variants of large-scale models. We first show that an adversary can exploit on-device models to make attacking the large models easier. In evaluations across 19 DNNs, by exploiting the published on-device models as a transfer prior, the adversarial vulnerability of the original commercial-scale models increases by up to 100x. We then show that the vulnerability increases as the similarity between a full-scale and its efficient model increase. Based on the insights, we propose a defense, $similarity$-$unpairing$, that fine-tunes on-device models with the objective of reducing the similarity. We evaluated our defense on all the 19 DNNs and found that it reduces the transferability up to 90% and the number of queries required by a factor of 10-100x. Our results suggest that further research is needed on the security (or even privacy) threats caused by publishing those efficient siblings.
translated by 谷歌翻译
The highest grossing media franchise of all times, with over \$90 billion in total revenue, is Pokemon. The video games belong to the class of Japanese Role Playing Games (J-RPG). Developing a powerful AI agent for these games is very hard because they present big challenges to MinMax, Monte Carlo Tree Search and statistical Machine Learning, as they are vastly different from the well explored in AI literature games. An AI agent for one of these games means significant progress in AI agents for the entire class. Further, the key principles of such work can hopefully inspire approaches to several domains that require excellent teamwork under conditions of extreme uncertainty, including managing a team of doctors, robots or employees in an ever changing environment, like a pandemic stricken region or a war-zone. In this paper we first explain the mechanics of the game and we perform a game analysis. We continue by proposing unique AI algorithms based on our understanding that the two biggest challenges in the game are keeping a balanced team and dealing with three sources of uncertainty. Later on, we describe why evaluating the performance of such agents is challenging and we present the results of our approach. Our AI agent performed significantly better than all previous attempts and peaked at the 33rd place in the world, in one of the most popular battle formats, while running on only 4 single socket servers.
translated by 谷歌翻译
Unlike tabular data, features in network data are interconnected within a domain-specific graph. Examples of this setting include gene expression overlaid on a protein interaction network (PPI) and user opinions in a social network. Network data is typically high-dimensional (large number of nodes) and often contains outlier snapshot instances and noise. In addition, it is often non-trivial and time-consuming to annotate instances with global labels (e.g., disease or normal). How can we jointly select discriminative subnetworks and representative instances for network data without supervision? We address these challenges within an unsupervised framework for joint subnetwork and instance selection in network data, called UISS, via a convex self-representation objective. Given an unlabeled network dataset, UISS identifies representative instances while ignoring outliers. It outperforms state-of-the-art baselines on both discriminative subnetwork selection and representative instance selection, achieving up to 10% accuracy improvement on all real-world data sets we use for evaluation. When employed for exploratory analysis in RNA-seq network samples from multiple studies it produces interpretable and informative summaries.
translated by 谷歌翻译
In this paper we present TruFor, a forensic framework that can be applied to a large variety of image manipulation methods, from classic cheapfakes to more recent manipulations based on deep learning. We rely on the extraction of both high-level and low-level traces through a transformer-based fusion architecture that combines the RGB image and a learned noise-sensitive fingerprint. The latter learns to embed the artifacts related to the camera internal and external processing by training only on real data in a self-supervised manner. Forgeries are detected as deviations from the expected regular pattern that characterizes each pristine image. Looking for anomalies makes the approach able to robustly detect a variety of local manipulations, ensuring generalization. In addition to a pixel-level localization map and a whole-image integrity score, our approach outputs a reliability map that highlights areas where localization predictions may be error-prone. This is particularly important in forensic applications in order to reduce false alarms and allow for a large scale analysis. Extensive experiments on several datasets show that our method is able to reliably detect and localize both cheapfakes and deepfakes manipulations outperforming state-of-the-art works. Code will be publicly available at https://grip-unina.github.io/TruFor/
translated by 谷歌翻译
Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.
translated by 谷歌翻译