我们提出了一项探索性定性研究,以了解作家如何与下一页建议相互作用。尽管对建议系统对写作的影响进行了一些定量研究,但几乎没有定性的工作来理解作家如何与建议系统互动及其如何影响他们的写作过程 - 特别是针对非本地但英国作家的。我们进行了一项研究,要求业余作家分别写两部电影评论,一本没有建议。我们发现作家以各种复杂的方式与下一页建议互动 - 作家能够抽象建议的多个部分并将其纳入他们的写作中 - 即使他们不同意整个建议。建议系统对写作过程也有各种影响 - 以独特的方式为写作过程的不同方面做出了影响。我们提出了一种用于与GPT-2写作的作家 - 探索互动模型,用于电影评论写作任务,然后是该模型可用于未来研究的方式,并概述了研究和设计的机会。
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
我们介绍了时间多模式的多模式学习,这是一个新的决策模型系列,可以间接学习和传输在线信息,同时观察一个概率分布,该概率分布有一个以上的峰值或一个以上的结果变量,从一个时间阶段到另一个时间阶段。我们通过基于数据生理学驱动的相关性依次删除不同变量和时间之间的其他不确定性来近似后部,以解决不确定性下的更广泛的挑战性时间依赖性决策问题。对现实世界数据集的广泛实验(即,城市交通数据和飓风整体预测数据)证明了拟议的有针对性决策的卓越性能,而不是各种设置的最先进的基线预测方法。
translated by 谷歌翻译