Supervised approaches generally rely on majority-based labels. However, it is hard to achieve high agreement among annotators in subjective tasks such as hate speech detection. Existing neural network models principally regard labels as categorical variables, while ignoring the semantic information in diverse label texts. In this paper, we propose AnnoBERT, a first-of-its-kind architecture integrating annotator characteristics and label text with a transformer-based model to detect hate speech, with unique representations based on each annotator's characteristics via Collaborative Topic Regression (CTR) and integrate label text to enrich textual representations. During training, the model associates annotators with their label choices given a piece of text; during evaluation, when label information is not available, the model predicts the aggregated label given by the participating annotators by utilising the learnt association. The proposed approach displayed an advantage in detecting hate speech, especially in the minority class and edge cases with annotator disagreement. Improvement in the overall performance is the largest when the dataset is more label-imbalanced, suggesting its practical value in identifying real-world hate speech, as the volume of hate speech in-the-wild is extremely small on social media, when compared with normal (non-hate) speech. Through ablation studies, we show the relative contributions of annotator embeddings and label text to the model performance, and tested a range of alternative annotator embeddings and label text combinations.
translated by 谷歌翻译
在20世纪下半叶,议会允许广播公司传播广播,并最终对选定委员会的辩论和会议进行电视报道。最近,为了进一步提高透明度和公民参与,英国议会开始发布这些辩论和会议本身的视频,并在发生辩论的细节上发布了辩论的细节。在本文中,我们试图通过使用超过两年的Google Analytics(分析)数据来表征人们如何参与议会辩论的视频数据。我们分析参与模式 - 它们如何登陆特定视频?他们如何听到此视频,即导致用户单击视频的(HTTP)推荐程序网站是什么?一旦用户降落在视频上,他们将如何互动?播放视频多长时间?下一个目的地是什么?等等。回答这些问题是了解人们为什么以及如何使用议会视频的重要第一步,因此,应如何适应和个性化视频交付平台满足该国公民的需求。从An,Kwak和Jansen(2017)汲取灵感,我们采用了非负矩阵分解(NMF)(Lee and Seung,1999)在视频视图矩阵上识别不同的用户原型,并识别原型。对我们发现的原型进行更深入的研究表明,它们主要是由它们降落在视频页面上的方式:搜索(即通过搜索引擎),推荐(即,来自其他议会网站),直接(即通过直接的)链接,嵌入在另一个网站上),社交(即,通过Facebook或Twitter等社交平台)等。
translated by 谷歌翻译
360-degree panoramic videos have gained considerable attention in recent years due to the rapid development of head-mounted displays (HMDs) and panoramic cameras. One major problem in streaming panoramic videos is that panoramic videos are much larger in size compared to traditional ones. Moreover, the user devices are often in a wireless environment, with limited battery, computation power, and bandwidth. To reduce resource consumption, researchers have proposed ways to predict the users' viewports so that only part of the entire video needs to be transmitted from the server. However, the robustness of such prediction approaches has been overlooked in the literature: it is usually assumed that only a few models, pre-trained on past users' experiences, are applied for prediction to all users. We observe that those pre-trained models can perform poorly for some users because they might have drastically different behaviors from the majority, and the pre-trained models cannot capture the features in unseen videos. In this work, we propose a novel meta learning based viewport prediction paradigm to alleviate the worst prediction performance and ensure the robustness of viewport prediction. This paradigm uses two machine learning models, where the first model predicts the viewing direction, and the second model predicts the minimum video prefetch size that can include the actual viewport. We first train two meta models so that they are sensitive to new training data, and then quickly adapt them to users while they are watching the videos. Evaluation results reveal that the meta models can adapt quickly to each user, and can significantly increase the prediction accuracy, especially for the worst-performing predictions.
translated by 谷歌翻译
Causal phenomena associated with rare events frequently occur across a wide range of engineering and mathematical problems, such as risk-sensitive safety analysis, accident analysis and prevention, and extreme value theory. However, current methods for causal discovery are often unable to uncover causal links between random variables that manifest only when the variables first experience low-probability realizations. To address this issue, we introduce a novel algorithm that performs statistical independence tests on data collected from time-invariant dynamical systems in which rare but consequential events occur. We seek to understand if the state of the dynamical system causally affects the likelihood of the rare event. In particular, we exploit the time-invariance of the underlying data to superimpose the occurrences of rare events, thus creating a new dataset, with rare events are better represented, on which conditional independence tests can be more efficiently performed. We provide non-asymptotic bounds for the consistency of our algorithm, and validate the performance of our algorithm across various simulated scenarios, with applications to traffic accidents.
translated by 谷歌翻译
This paper addresses the problem of position estimation in UAVs operating in a cluttered environment where GPS information is unavailable. A model learning-based approach is proposed that takes in the rotor RPMs and past state as input and predicts the one-step-ahead position of the UAV using a novel spectral-normalized memory neural network (SN-MNN). The spectral normalization guarantees stable and reliable prediction performance. The predicted position is transformed to global coordinate frame which is then fused along with the odometry of other peripheral sensors like IMU, barometer, compass etc., using the onboard extended Kalman filter to estimate the states of the UAV. The experimental flight data collected from a motion capture facility using a micro-UAV is used to train the SN-MNN. The PX4-ECL library is used to replay the flight data using the proposed algorithm, and the estimated position is compared with actual ground truth data. The proposed algorithm doesn't require any additional onboard sensors, and is computationally light. The performance of the proposed approach is compared with the current state-of-art GPS-denied algorithms, and it can be seen that the proposed algorithm has the least RMSE for position estimates.
translated by 谷歌翻译
ML-AS-A-Service继续增长,对非常强大的隐私保证的需求也在继续增长。安全推断已成为潜在的解决方案,其中加密原始图允许推理不向用户向用户揭示用户的输入或模型的权重。例如,模型提供商可以是一家诊断公司,该公司已经培训了一种最先进的Densenet-121模型来解释胸部X射线,并且用户可以在医院成为患者。尽管对于这种环境,确保推理原则上是可行的,但没有现有的技术使其大规模实用。 Cryptflow2框架提供了一种潜在的解决方案,其能力自动,正确地将清晰文本推理转换为安全模型的推断。但是,从Cryptflow2产生的安全推断在不切实际上很昂贵:在Densenet-121上解释单个X射线需要几乎3TB的通信。在本文中,我们解决了针对三项贡献的安全推断效率低下的重大挑战。首先,我们证明安全推理中的主要瓶颈是大型线性层,可以通过选择网络骨干的选择来优化,并使用用于有效的清晰文本推理开发的操作员。这一发现和强调与许多最近的作品偏离,这些作品着重于在执行较小网络的安全推断时优化非线性激活层。其次,基于对瓶颈卷积层的分析,我们设计了一个更有效的倒入替代品的X操作器。第三,我们表明,快速的Winograd卷积算法进一步提高了安全推断的效率。结合使用,这三个优化被证明对在CHEXPERT数据集中训练的X射线解释问题非常有效。
translated by 谷歌翻译
在环境抽象中进行高级搜索来指导低水平决策,这是一种有效的方法,是解决连续状态和行动空间中的长途任务的有效方法。最近的工作表明,可以以符号操作员和神经采样器的形式学习使这种二聚体计划的动作抽象,并且鉴于实现已知目标的符号谓词和演示。在这项工作中,我们表明,在动作往往会导致大量谓词发生变化的环境中,现有的方法不足。为了解决这个问题,我们建议学习具有忽略效果的操作员。激发我们方法的关键思想是,对谓词的每一个观察到的变化进行建模是不必要的。唯一需要建模的更改是高级搜索以实现指定目标所需的更改。在实验上,我们表明我们的方法能够学习具有忽略六个混合机器人域效果的操作员,这些企业能够解决一个代理,以解决具有不同初始状态,目标和对象数量的新任务变化,比几个基线要高得多。
translated by 谷歌翻译
强化学习(RL)文献的最新进展使机器人主义者能够在模拟环境中自动训练复杂的政策。但是,由于这些方法的样本复杂性差,使用现实世界数据解决强化学习问题仍然是一个具有挑战性的问题。本文介绍了一种新颖的成本整形方法,旨在减少学习稳定控制器所需的样品数量。该方法添加了一个涉及控制Lyapunov功能(CLF)的术语 - 基于模型的控制文献的“能量样”功能 - 到典型的成本配方。理论结果表明,新的成本会导致使用较小的折现因子时稳定控制器,这是众所周知的,以降低样品复杂性。此外,通过确保即使是高度亚最佳的策略也可以稳定系统,添加CLF术语“鲁棒化”搜索稳定控制器。我们通过两个硬件示例演示了我们的方法,在其中我们学习了一个cartpole的稳定控制器和仅使用几秒钟和几分钟的微调数据的A1稳定控制器。
translated by 谷歌翻译
深层神经网络如今成功地拟合了非常复杂的功能,但是对于推理而言,密集的模型开始非常昂贵。为了减轻这种情况,一个有希望的方向是激活网络稀疏子图的网络。该子图是由数据依赖性路由函数选择的,将输入的固定映射到子网(例如,专家(MOE)在开关变压器中的混合物)。但是,先前的工作在很大程度上是经验的,尽管现有的路由功能在实践中效果很好,但它们并没有导致近似能力的理论保证。我们旨在为稀疏网络的力量提供理论解释。作为我们的第一个贡献,我们提出了一个与数据相关的稀疏网络的形式模型,该网络捕获了流行体系结构的显着方面。然后,我们基于局部性敏感哈希(LSH)引入一个路由函数,使我们能够对稀疏网络近似目标函数的方式进行推论。在用我们的模型代表基于LSH的稀疏网络之后,我们证明稀疏网络可以匹配Lipschitz函数上密集网络的近似能力。在输入向量上应用LSH意味着专家在输入空间的不同子区域中插值目标函数。为了支持我们的理论,我们根据Lipschitz的目标功能定义了各种数据集,并且我们表明,稀疏网络在活动数量数量和近似质量之间具有良好的权衡。
translated by 谷歌翻译
在本文中,提出了一个稳定稳定的轨迹跟踪控制器,用于多uav有效载荷运输。多uav有效负载系统在无人机和有效负载框架的垂直刚性链接之间具有2DOF磁球接头,因此无人机可以自由滚动或自由投球。这些垂直链接紧密地连接到有效载荷上,无法移动。为完整的有效载体 - uav系统得出了输入输出反馈线性化模型以及有效载荷轨迹跟踪的推力矢量控制。关于跟踪控制定律的理论分析表明,控制定律是指数稳定的,从而确保了沿期望轨迹的安全运输。为了验证拟议的控制定律的性能,提供了数值模拟以及高保真凉亭实时仿真的结果。接下来,针对两种实际情况分析了提议的控制器的鲁棒性:有效载荷和有效载荷质量不确定性的外部干扰。结果清楚地表明,所提出的控制器在实现指数稳定的轨迹跟踪的同时具有稳健性和计算效率。
translated by 谷歌翻译