Deep learning models are being increasingly applied to imbalanced data in high stakes fields such as medicine, autonomous driving, and intelligence analysis. Imbalanced data compounds the black-box nature of deep networks because the relationships between classes may be highly skewed and unclear. This can reduce trust by model users and hamper the progress of developers of imbalanced learning algorithms. Existing methods that investigate imbalanced data complexity are geared toward binary classification, shallow learning models and low dimensional data. In addition, current eXplainable Artificial Intelligence (XAI) techniques mainly focus on converting opaque deep learning models into simpler models (e.g., decision trees) or mapping predictions for specific instances to inputs, instead of examining global data properties and complexities. Therefore, there is a need for a framework that is tailored to modern deep networks, that incorporates large, high dimensional, multi-class datasets, and uncovers data complexities commonly found in imbalanced data (e.g., class overlap, sub-concepts, and outlier instances). We propose a set of techniques that can be used by both deep learning model users to identify, visualize and understand class prototypes, sub-concepts and outlier instances; and by imbalanced learning algorithm developers to detect features and class exemplars that are key to model performance. Our framework also identifies instances that reside on the border of class decision boundaries, which can carry highly discriminative information. Unlike many existing XAI techniques which map model decisions to gray-scale pixel locations, we use saliency through back-propagation to identify and aggregate image color bands across entire classes. Our framework is publicly available at \url{https://github.com/dd1github/XAI_for_Imbalanced_Learning}
translated by 谷歌翻译
We can protect user data privacy via many approaches, such as statistical transformation or generative models. However, each of them has critical drawbacks. On the one hand, creating a transformed data set using conventional techniques is highly time-consuming. On the other hand, in addition to long training phases, recent deep learning-based solutions require significant computational resources. In this paper, we propose PrivateSMOTE, a technique designed for competitive effectiveness in protecting cases at maximum risk of re-identification while requiring much less time and computational resources. It works by synthetic data generation via interpolation to obfuscate high-risk cases while minimizing data utility loss of the original data. Compared to multiple conventional and state-of-the-art privacy-preservation methods on 20 data sets, PrivateSMOTE demonstrates competitive results in re-identification risk. Also, it presents similar or higher predictive performance than the baselines, including generative adversarial networks and variational autoencoders, reducing their energy consumption and time requirements by a minimum factor of 9 and 12, respectively.
translated by 谷歌翻译
Link prediction is a crucial problem in graph-structured data. Due to the recent success of graph neural networks (GNNs), a variety of GNN-based models were proposed to tackle the link prediction task. Specifically, GNNs leverage the message passing paradigm to obtain node representation, which relies on link connectivity. However, in a link prediction task, links in the training set are always present while ones in the testing set are not yet formed, resulting in a discrepancy of the connectivity pattern and bias of the learned representation. It leads to a problem of dataset shift which degrades the model performance. In this paper, we first identify the dataset shift problem in the link prediction task and provide theoretical analyses on how existing link prediction methods are vulnerable to it. We then propose FakeEdge, a model-agnostic technique, to address the problem by mitigating the graph topological gap between training and testing sets. Extensive experiments demonstrate the applicability and superiority of FakeEdge on multiple datasets across various domains.
translated by 谷歌翻译
尽管图神经网络(GNNS)已经证明了它们在处理非欧国人结构数据方面的功效,但由于多跳数据依赖性施加的可伸缩性约束,因此很难将它们部署在实际应用中。现有方法试图通过使用训练有素的GNN的标签训练多层感知器(MLP)来解决此可伸缩性问题。即使可以显着改善MLP的性能,但两个问题仍能阻止MLP的表现优于GNN并在实践中使用:图形结构信息的无知和对节点功能噪声的敏感性。在本文中,我们建议在图(NOSMOG)上学习噪声稳定结构感知的MLP,以克服挑战。具体而言,我们首先将节点内容与位置功能进行补充,以帮助MLP捕获图形结构信息。然后,我们设计了一种新颖的表示相似性蒸馏策略,以将结构节点相似性注入MLP。最后,我们介绍了对抗性功能的扩展,以确保稳定的学习能力噪声,并进一步提高性能。广泛的实验表明,在七个数据集中,NOSMOG在转导和归纳环境中均优于GNN和最先进的方法,同时保持竞争性推理效率。
translated by 谷歌翻译
生成的自我监督学习(SSL),尤其是蒙面自动编码器,已成为最令人兴奋的学习范式之一,并且在处理图形数据方面表现出了巨大的潜力。但是,现实世界图总是异质的,它提出了现有方法忽略的三个关键挑战:1)如何捕获复杂的图形结构? 2)如何合并各种节点属性? 3)如何编码不同的节点位置?鉴于此,我们研究了异质图上生成SSL的问题,并提出了HGMAE,这是一种新型的异质图掩盖自动编码器模型,以应对这些挑战。 HGMAE通过两种创新的掩蔽技术和三种独特的培训策略捕获了全面的图形信息。特别是,我们首先使用动态掩模速率开发Metapath掩盖和自适应属性掩蔽,以实现在异质图上有效和稳定的学习。然后,我们设计了几种培训策略,包括基于Metapath的边缘重建,以采用复杂的结构信息,目标属性恢复以结合各种节点属性,以及位置特征预测以编码节点位置信息。广泛的实验表明,HGMAE在多个数据集上的几个任务上均优于对比度和生成的最新基准。
translated by 谷歌翻译
必须密切监控网络物理系统(CPS),以识别并潜在地缓解其常规操作期间出现的新兴问题。但是,他们通常产生的多元时间序列数据可能很复杂,可以理解和分析。虽然正式的产品文档通常会提供诊断建议的示例数据图,但属性,关键阈值和数据交互的纯粹多样性可能会使非专家们不知所措,他们随后从讨论论坛中寻求帮助来解释其数据日志。深度学习模型,例如长期记忆(LSTM)网络,可用于自动化这些任务,并提供对实时多元数据流中检测到的各种异常的明确解释。在本文中,我们介绍了RESAM,该过程是一项需求过程,该过程旨在整合领域专家,讨论论坛和正式产品文档的知识,以以时间序列属性的形式发现和指定需求和设计定义,这些属性有助于构建有效的深度学习异常检测器。我们提出了一个基于针对小型无空天空系统的飞行控制系统的案例研究,并证明其使用指导有效的异常检测模型的构建,同时还为解释性提供了基本支持。 RESAM与开放或关闭的在线论坛为日志分析提供讨论支持的域相关。
translated by 谷歌翻译
机器学习(ML)在渲染影响社会各个群体的决策中起着越来越重要的作用。 ML模型为刑事司法的决定,银行业中的信贷延长以及公司的招聘做法提供了信息。这提出了模型公平性的要求,这表明自动化的决策对于受保护特征(例如,性别,种族或年龄)通常是公平的,这些特征通常在数据中代表性不足。我们假设这个代表性不足的问题是数据学习不平衡问题的必然性。此类不平衡通常反映在两个类别和受保护的功能中。例如,一个班级(那些获得信用的班级)对于另一个班级(未获得信用的人)可能会过分代表,而特定组(女性)(女性)的代表性可能与另一组(男性)有关。相对于受保护组的算法公平性的关键要素是同时减少了基础培训数据中的类和受保护的群体失衡,这促进了模型准确性和公平性的提高。我们通过展示这些领域中的关键概念如何重叠和相互补充,讨论弥合失衡学习和群体公平的重要性;并提出了一种新颖的过采样算法,即公平的过采样,该算法既解决偏斜的类别分布和受保护的特征。我们的方法:(i)可以用作标准ML算法的有效预处理算法,以共同解决不平衡和群体权益; (ii)可以与公平感知的学习算法结合使用,以提高其对不同水平不平衡水平的稳健性。此外,我们迈出了一步,将公平和不平衡学习之间的差距与新的公平实用程序之间的差距弥合,从而将平衡的准确性与公平性结合在一起。
translated by 谷歌翻译
深度学习模型记住培训数据,这损害了他们推广到代表性不足的课程的能力。我们从经验上研究了卷积神经网络对图像数据不平衡数据的内部表示,并测量了训练和测试集中模型特征嵌入之间的概括差距,这表明该差距对于少数类别的差异更大。这个洞察力使我们能够为不平衡数据设计有效的三相CNN培训框架。该框架涉及训练网络端到端的数据不平衡数据以学习准确的功能嵌入,在学习的嵌入式空间中执行数据增强以平衡火车分布,并在嵌入式平衡的培训数据上微调分类器头。我们建议在培训框架中使用广泛的过采样(EOS)作为数据增强技术。 EOS形成合成训练实例,作为少数族类样本与其最近的敌人之间的凸组合,以减少概括差距。提出的框架提高了与不平衡学习中常用的领先成本敏感和重新采样方法的准确性。此外,它比标准数据预处理方法(例如SMOTE和基于GAN的过采样)更有效,因为它需要更少的参数和更少的训练时间。
translated by 谷歌翻译
分子表示学习(MRL)是建立机器学习与化学科学之间联系的关键步骤。特别是,它将分子编码为保留分子结构和特征的数值向量,在其上可以执行下游任务(例如,属性预测)。最近,MRL取得了相当大的进步,尤其是在基于深的分子图学习方法中。在这项调查中,我们系统地回顾了这些基于图的分子表示技术。具体而言,我们首先介绍2D和3D图分子数据集的数据和功能。然后,我们总结了专门为MRL设计的方法,并将其分为四种策略。此外,我们讨论了MRL支持的一些典型化学应用。为了促进该快速发展领域的研究,我们还列出了论文中的基准和常用数据集。最后,我们分享我们对未来研究方向的想法。
translated by 谷歌翻译
图形神经网络(GNNS)继续在许多图形学习任务上实现最新性能,但要依靠以下假设:给定的图是真实邻域结构的足够近似。当系统包含高阶顺序依赖性时,我们表明,传统图表表示每个节点的邻域的趋势会导致现有的GNN概括较差。为了解决这个问题,我们提出了一个新颖的深图集合(DGE),该集合(DGE)通过在高阶网络结构中训练同一节点的不同邻域子空间来捕获社区差异。我们表明,DGE在六个现实世界中的六个现实世界数据集上始终优于现有的GNN,即使在类似的参数预算下,也具有已知的高阶依赖性的六个现实数据集。我们证明,学习多样和准确的基础分类器对DGE的成功至关重要,并讨论了这些发现对GNNS合奏的未来工作的含义。
translated by 谷歌翻译