我们提出了一种从普通X射线图像中估算骨矿物质密度(BMD)的方法。双能X射线吸收法(DXA)和定量计算机断层扫描(QCT)在诊断骨质疏松症方面具有很高的精度;但是,这些方式需要特殊的设备和扫描协议。测量X射线图像的BMD提供了机会筛查,这对于早期诊断可能有用。先前直接了解X射线图像和BMD之间关系的方法需要大型训练数据集,以实现高精度,因为X射线图像中的强度很大。因此,我们提出了一种使用QCT训练生成对抗网络(GAN)的方法,并将X射线图像分解为骨分割QCT的投影。提出的分层学习提高了定量分解小区域目标的鲁棒性和准确性。使用拟议的方法对200例骨关节炎评估,我们将其命名为BMD-GAN,在预测和地面真实DXA测量的BMD之间显示出Pearson相关系数为0.888。除了不需要大规模训练数据库外,我们方法的另一个优点是它的扩展性对其他解剖区域,例如椎骨和肋骨。
translated by 谷歌翻译