Quantum Kernel方法是量子机器学习的关键方法之一,这具有不需要优化的优点,并且具有理论简单。凭借这些属性,到目前为止已经开发了几种实验演示和对潜在优势的讨论。但是,正如古典机器学习所在的情况一样,并非所有量子机器学习模型都可以被视为内核方法。在这项工作中,我们探讨了具有深层参数化量子电路的量子机器学习模型,旨在超出传统量子核法。在这种情况下,预计表示功率和性能将得到增强,而培训过程可能是丢储Plateaus问题的瓶颈。然而,我们发现,在训练期间,深度足够的量子电路的参数不会从其初始值中移动到初始值,从而允许一阶扩展参数。这种行为类似于经典文献中的神经切线内核,并且可以通过另一个紧急内核,量子切线内核来描述这种深度变化量子机器学习。数值模拟表明,所提出的Quantum切线内核优于传统的Quantum核心核对ANSATZ生成的数据集。该工作提供了超出传统量子内核法的新方向,并探讨了用深层参数化量子电路的量子机器学习的潜在力量。
translated by 谷歌翻译
我们提出了一个名为“ Visual配方流”的新的多模式数据集,使我们能够学习每个烹饪动作的结果。数据集由对象状态变化和配方文本的工作流程组成。状态变化表示为图像对,而工作流则表示为食谱流图(R-FG)。图像对接地在R-FG中,该R-FG提供了交叉模式关系。使用我们的数据集,可以尝试从多模式常识推理和程序文本生成来尝试一系列应用程序。
translated by 谷歌翻译
在本文中,我们为LIMM介绍了一个运动计划者,该计划者是一个模块化的多模式包装输送平台。单个limms单元是一个机器人,它可以作为手臂或腿部操作,具体取决于它的附加方式和内容,例如,当操纵器固定在送货车内的墙壁上时,或将4个附加在盒子附加到盒子的墙壁上时。当每个限制的角色都可以扮演截然不同的角色时,在多个lim上进行协调,很快就会变得复杂。对于这样一个计划问题,我们首先构成了必要的逻辑和约束。然后,该公式将用于技能探索,并可以在精炼后在硬件上实现。为了解决此优化问题,我们使用乘数的交替方向方法(ADMM)。在各种情况下,对拟议的规划师进行了实验,该计划显示了LIMMS进入不同模式或组合的能力,以实现其移动运输箱的目标。
translated by 谷歌翻译
尽管腿部机器人的运动计划表现出了巨大的成功,但具有灵活的多指抓握的腿部机器人的运动计划尚未成熟。我们提出了一个有效的运动计划框架,用于同时解决运动(例如,质心动力学),抓地力(例如,贴片接触)和触点(例如步态)问题。为了加速计划过程,我们建议基于乘数的交替方向方法(ADMM)提出分布式优化框架,以求解原始的大型混合构成非整数非线性编程(MINLP)。最终的框架使用混合构成二次编程(MIQP)来求解联系人和非线性编程(NLP)来求解非线性动力学,这些动力学在计算方面更可行,对参数较不敏感。此外,我们通过微蜘蛛抓手从极限表面明确执行补丁接触约束。我们在硬件实验中演示了我们提出的框架,这表明多限制机器人能够实现各种动作,包括在斜坡角度45 {\ deg}的情况下进行较短的计划时间。
translated by 谷歌翻译
本文介绍了Scalucs,这是一种四足动物,该机器人在地上,悬垂和天花板上爬上攀爬,并在地面上爬行。 Scaleer是最早的自由度四束机器人之一,可以在地球的重力下自由攀爬,也是地面上最有效的四足动物之一。在其他最先进的登山者专门攀登自己的地方,Scaleer承诺使用有效载荷\ Textit {和}地面运动实践自由攀爬,这实现了真正的多功能移动性。新的攀登步态滑冰步态通过利用缩放器的身体连锁机制来增加有效载荷。 Scaleer在地面上达到了最大归一化的运动速度,即$ 1.87 $ /s,$ 0.56 $ m /s,$ 1.2 $ /min,或$ 0.42 $ m /min /min的岩石墙攀爬。有效载荷能力达到地面上缩放器重量的233美元,垂直墙上的$ 35 $%。我们的山羊抓手是一种机械适应的两指抓手,成功地抓住了凸凸和非凸的对象,并支持缩放器。
translated by 谷歌翻译
我们展示了一个具有自动调整的入口控制器,该控制器可用于单个和多点接触机器人(例如,带有点脚或多指握把的腿部机器人)。控制器的目标是跟踪每个接触点的扳手轮廓,同时考虑旋转摩擦引起的额外扭矩。我们的接收控制器在在线操作期间具有自适应性,该方法通过自动调整方法调整了控制器的收益,同时遵循几个培训目标,以促进控制器稳定性,例如尽可能接近跟踪扳手配置文件,以确保控制输出在实力之内限制最小化滑移并避免运动学奇异性。我们使用多限制的攀登机器人来证明控制器在硬件上的鲁棒性,用于操纵和运动任务。
translated by 谷歌翻译