学习电子健康记录(EHRS)表示是一个杰出但未被发现的研究主题。它受益于各种临床决策支持应用,例如药物结果预测或患者相似性搜索。当前的方法集中在特定于任务的标签监督上,对矢量化的顺序EHR,这不适用于大规模无监督的方案。最近,对比度学习在自我监督的代表性学习问题上显示出巨大的成功。但是,复杂的时间性通常会降低表现。我们提出了图形内核信息,这是EHR图形表示的一种自我监督的图内学习方法,以克服先前的问题。与最新的艺术品不同,我们不会更改图形结构以构建增强视图。取而代之的是,我们使用内核子空间扩展将节点嵌入两个几何不同的流形视图中。整个框架是通过通过常用的对比目标在这两种歧管视图上对比的节点和图形表示训练的。从经验上讲,使用公开可用的基准EHR数据集,我们的方法在超过最先进的临床下游任务上产生了表现。从理论上讲,距离指标的变化自然会在不改变图形结构的情况下创建不同的视图作为数据增强。
translated by 谷歌翻译