逆渲染是一个不适的问题。以前的工作试图通过重点关注对象或场景形状或外观的先验来解决这一问题。在这项工作中,我们专注于自然照明的先验。当前方法依赖于球形谐波照明或其他通用表示,充其量是参数的简单先验。我们提出了一个有条件的神经场表示,基于带有警报网络的变异自动描述器,并扩展向量神经元,直接将其构建到网络中。使用此功能,我们开发了一个旋转等值的高动态范围(HDR)神经照明模型,该模型紧凑并且能够表达自然环境图的复杂,高频特征。在自然场景的1.6k HDR环境图的策划数据集上训练我们的模型,我们将其与传统表示形式进行了比较,证明了其适用于反向渲染任务,并通过部分观察显示了环境图的完成。可以在jadgardner.github.io/reni上找到我们的数据集和训练有素的模型。
translated by 谷歌翻译
功率曲线捕获风速与特定风力涡轮机的输出功率之间的关系。这种功能的准确回归模型在监控,维护,设计和规划方面证明是有用的。然而,在实践中,测量并不总是对应于理想曲线:电源缩减将显示为(附加)功能组件。这种多值关系不能通过常规回归建模,并且在预处理期间通常去除相关数据。目前的工作表明了一种替代方法,可以在缩减电力数据中推断多值关系。使用基于人群的方法,将概率回归模型的重叠混合应用于从操作风电场内的涡轮机记录的信号。示出了模型,以便在整个人口中提供精确的实际功率数据表示。
translated by 谷歌翻译
高斯工艺高参数优化需要大核矩阵的线性溶解和对数确定因子。迭代数值技术依赖于线性溶液的共轭梯度方法(CG)和对数数据的随机痕迹估计的迭代数值技术变得越来越流行。这项工作介绍了用于预处理这些计算的新算法和理论见解。虽然在CG的背景下对预处理有充分的理解,但我们证明了它也可以加速收敛并减少对数数据及其衍生物的估计值的方差。我们证明了对数确定性,对数 - 界限可能性及其衍生物的预处理计算的一般概率误差界限。此外,我们得出了一系列内核 - 前提组合的特定速率,这表明可以达到指数收敛。我们的理论结果可以证明对内核超参数的有效优化,我们在大规模的基准问题上进行经验验证。我们的方法可以加速训练,最多可以达到数量级。
translated by 谷歌翻译
制定和实施结构健康监测系统的主要动机是获得有关制定结构和维护结构和维护的能力的前景。遗憾的是,对于对应于感兴趣结构的健康状态信息的测量数据的描述性标签很少在监控系统之前可用。该问题限制了传统监督和无监督方法对机器学习的适用性,以便在统计分类机制下进行决策支持SHM系统。本文提出了一种基于风险的主动学习的制定,其中类标签信息的查询被每个初期数据点的所述信息的预期值引导。当应用于结构性健康监测时,可以将类标签查询映射到兴趣结构的检查中,以确定其健康状态。在本文中,通过代表数值示例解释和可视化基于风险的主动学习过程,随后应用于Z24桥梁基准。案例研究结果表明,通过统计分类器的基于风险的主动学习可以改善决策者的性能,从而考虑决策过程本身。
translated by 谷歌翻译
Accurate determination of a small molecule candidate (ligand) binding pose in its target protein pocket is important for computer-aided drug discovery. Typical rigid-body docking methods ignore the pocket flexibility of protein, while the more accurate pose generation using molecular dynamics is hindered by slow protein dynamics. We develop a tiered tensor transform (3T) algorithm to rapidly generate diverse protein-ligand complex conformations for both pose and affinity estimation in drug screening, requiring neither machine learning training nor lengthy dynamics computation, while maintaining both coarse-grain-like coordinated protein dynamics and atomistic-level details of the complex pocket. The 3T conformation structures we generate are closer to experimental co-crystal structures than those generated by docking software, and more importantly achieve significantly higher accuracy in active ligand classification than traditional ensemble docking using hundreds of experimental protein conformations. 3T structure transformation is decoupled from the system physics, making future usage in other computational scientific domains possible.
translated by 谷歌翻译
Variational autoencoders model high-dimensional data by positing low-dimensional latent variables that are mapped through a flexible distribution parametrized by a neural network. Unfortunately, variational autoencoders often suffer from posterior collapse: the posterior of the latent variables is equal to its prior, rendering the variational autoencoder useless as a means to produce meaningful representations. Existing approaches to posterior collapse often attribute it to the use of neural networks or optimization issues due to variational approximation. In this paper, we consider posterior collapse as a problem of latent variable non-identifiability. We prove that the posterior collapses if and only if the latent variables are non-identifiable in the generative model. This fact implies that posterior collapse is not a phenomenon specific to the use of flexible distributions or approximate inference. Rather, it can occur in classical probabilistic models even with exact inference, which we also demonstrate. Based on these results, we propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility. This model class resolves the problem of latent variable non-identifiability by leveraging bijective Brenier maps and parameterizing them with input convex neural networks, without special variational inference objectives or optimization tricks. Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
Deep learning techniques with neural networks have been used effectively in computational fluid dynamics (CFD) to obtain solutions to nonlinear differential equations. This paper presents a physics-informed neural network (PINN) approach to solve the Blasius function. This method eliminates the process of changing the non-linear differential equation to an initial value problem. Also, it tackles the convergence issue arising in the conventional series solution. It is seen that this method produces results that are at par with the numerical and conventional methods. The solution is extended to the negative axis to show that PINNs capture the singularity of the function at $\eta=-5.69$
translated by 谷歌翻译
The Government of Kerala had increased the frequency of supply of free food kits owing to the pandemic, however, these items were static and not indicative of the personal preferences of the consumers. This paper conducts a comparative analysis of various clustering techniques on a scaled-down version of a real-world dataset obtained through a conjoint analysis-based survey. Clustering carried out by centroid-based methods such as k means is analyzed and the results are plotted along with SVD, and finally, a conclusion is reached as to which among the two is better. Once the clusters have been formulated, commodities are also decided upon for each cluster. Also, clustering is further enhanced by reassignment, based on a specific cluster loss threshold. Thus, the most efficacious clustering technique for designing a food kit tailored to the needs of individuals is finally obtained.
translated by 谷歌翻译
Learning efficient and interpretable policies has been a challenging task in reinforcement learning (RL), particularly in the visual RL setting with complex scenes. While neural networks have achieved competitive performance, the resulting policies are often over-parameterized black boxes that are difficult to interpret and deploy efficiently. More recent symbolic RL frameworks have shown that high-level domain-specific programming logic can be designed to handle both policy learning and symbolic planning. However, these approaches rely on coded primitives with little feature learning, and when applied to high-dimensional visual scenes, they can suffer from scalability issues and perform poorly when images have complex object interactions. To address these challenges, we propose \textit{Differentiable Symbolic Expression Search} (DiffSES), a novel symbolic learning approach that discovers discrete symbolic policies using partially differentiable optimization. By using object-level abstractions instead of raw pixel-level inputs, DiffSES is able to leverage the simplicity and scalability advantages of symbolic expressions, while also incorporating the strengths of neural networks for feature learning and optimization. Our experiments demonstrate that DiffSES is able to generate symbolic policies that are simpler and more and scalable than state-of-the-art symbolic RL methods, with a reduced amount of symbolic prior knowledge.
translated by 谷歌翻译