Artificial Intelligence (AI) and its data-centric branch of machine learning (ML) have greatly evolved over the last few decades. However, as AI is used increasingly in real world use cases, the importance of the interpretability of and accessibility to AI systems have become major research areas. The lack of interpretability of ML based systems is a major hindrance to widespread adoption of these powerful algorithms. This is due to many reasons including ethical and regulatory concerns, which have resulted in poorer adoption of ML in some areas. The recent past has seen a surge in research on interpretable ML. Generally, designing a ML system requires good domain understanding combined with expert knowledge. New techniques are emerging to improve ML accessibility through automated model design. This paper provides a review of the work done to improve interpretability and accessibility of machine learning in the context of global problems while also being relevant to developing countries. We review work under multiple levels of interpretability including scientific and mathematical interpretation, statistical interpretation and partial semantic interpretation. This review includes applications in three areas, namely food processing, agriculture and health.
translated by 谷歌翻译
作为生成部件作为自回归模型的向量量化变形式自动化器(VQ-VAE)的集成在图像生成上产生了高质量的结果。但是,自回归模型将严格遵循采样阶段的逐步扫描顺序。这导致现有的VQ系列模型几乎不会逃避缺乏全球信息的陷阱。连续域中的去噪扩散概率模型(DDPM)显示了捕获全局背景的能力,同时产生高质量图像。在离散状态空间中,一些作品已经证明了执行文本生成和低分辨率图像生成的可能性。我们认为,在VQ-VAE的富含内容的离散视觉码本的帮助下,离散扩散模型还可以利用全局上下文产生高保真图像,这补偿了沿像素空间的经典自回归模型的缺陷。同时,离散VAE与扩散模型的集成解决了传统的自回归模型的缺点是超大的,以及在生成图像时需要在采样过程中的过度时间的扩散模型。结果发现所生成的图像的质量严重依赖于离散的视觉码本。广泛的实验表明,所提出的矢量量化离散扩散模型(VQ-DDM)能够实现与低复杂性的顶层方法的相当性能。它还展示了在没有额外培训的图像修复任务方面与自回归模型量化的其他矢量突出的优势。
translated by 谷歌翻译
决策树的集合被称为随机森林。如Breiman所提出的,不稳定学习者的实力和它们之间的多样性是集合模型的核心力量。在本文中,我们提出了两种用于生成双随机森林的合奏方法。在第一种方法中,我们提出了一种基于双随机森林的旋转组合。在基于旋转的双随机林,在每个节点处产生特征空间的转换或旋转。在每个节点上选择不同随机特征子空间进行评估,因此每个节点处的变换是不同的。不同的转变导致基本学习者之间更好的多样性,因此,更好的泛化性能。随着双随机森林作为基础学习者,每个节点的数据通过两个不同的变换转换,即主成分分析和线性判别分析。在第二种方法中,我们提出了双随机森林的倾斜组合。在随机林和双随机森林中的决策树是单变量的,这导致轴并行分裂的产生,这不能捕获数据的几何结构。此外,标准随机森林可能不会产生足够大的决策树,从而导致次优的性能。为了捕获几何属性并生长足够深度的决策树,我们提出了双随机森林的倾斜集合。双随机森林模型的倾斜集合是多元决策树。在每个非叶节点上,多面近端支持向量机产生最佳平面以获得更好的泛化性能。此外,不同的正则化技术(Tikhonov正则化和轴并行分裂正则化)用于解决双随机林的倾斜组合决策树中的小样本大小问题。
translated by 谷歌翻译
合奏学习结合了几个单独的模型,以获得更好的概括性能。目前,与浅层或传统模型相比,深度学习体系结构表现更好。深度合奏学习模型结合了深度学习模型以及整体学习的优势,使最终模型具有更好的概括性能。本文回顾了最先进的深度合奏模型,因此是研究人员的广泛摘要。合奏模型广泛地分类为包装,增强,堆叠,基于负相关的深度合奏模型,显式/隐式合奏,同质/异质合奏,基于决策融合策略的深层集合模型。还简要讨论了在不同领域中深层集成模型的应用。最后,我们以一些潜在的未来研究方向结束了本文。
translated by 谷歌翻译
Differentiable Architecture Search (DARTS) has attracted considerable attention as a gradient-based Neural Architecture Search (NAS) method. Since the introduction of DARTS, there has been little work done on adapting the action space based on state-of-art architecture design principles for CNNs. In this work, we aim to address this gap by incrementally augmenting the DARTS search space with micro-design changes inspired by ConvNeXt and studying the trade-off between accuracy, evaluation layer count, and computational cost. To this end, we introduce the Pseudo-Inverted Bottleneck conv block intending to reduce the computational footprint of the inverted bottleneck block proposed in ConvNeXt. Our proposed architecture is much less sensitive to evaluation layer count and outperforms a DARTS network with similar size significantly, at layer counts as small as 2. Furthermore, with less layers, not only does it achieve higher accuracy with lower GMACs and parameter count, GradCAM comparisons show that our network is able to better detect distinctive features of target objects compared to DARTS.
translated by 谷歌翻译
Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic versions of other metaheuristics using classical benchmark problems without shift/rotation, show competitive performances. In this study, we exhaustively tabulate more than 500 metaheuristics. To comparatively evaluate the performance of the recent competitive variants and newly proposed metaheuristics, 11 newly proposed metaheuristics and 4 variants of established metaheuristics are comprehensively compared on the CEC2017 benchmark suite. In addition, whether these algorithms have a search bias to the center of the search space is investigated. The results show that the performance of the newly proposed EBCM (effective butterfly optimizer with covariance matrix adaptation) algorithm performs comparably to the 4 well performing variants of the established metaheuristics and possesses similar properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in many aspects. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new algorithms proposed mostly during 2019-2020 are inferior to the well performing 2017 variants of differential evolution and evolution strategy in terms of convergence speed and global search ability on CEC 2017 functions.
translated by 谷歌翻译
Non-parametric tests can determine the better of two stochastic optimization algorithms when benchmarking results are ordinal, like the final fitness values of multiple trials. For many benchmarks, however, a trial can also terminate once it reaches a pre-specified target value. When only some trials reach the target value, two variables characterize a trial's outcome: the time it takes to reach the target value (or not) and its final fitness value. This paper describes a simple way to impose linear order on this two-variable trial data set so that traditional non-parametric methods can determine the better algorithm when neither dominates. We illustrate the method with the Mann-Whitney U-test. A simulation demonstrates that U-scores are much more effective than dominance when tasked with identifying the better of two algorithms. We test U-scores by having them determine the winners of the CEC 2022 Special Session and Competition on Real-Parameter Numerical Optimization.
translated by 谷歌翻译
Monte-Carlo Tree Search (MCTS) is an adversarial search paradigm that first found prominence with its success in the domain of computer Go. Early theoretical work established the game-theoretic soundness and convergence bounds for Upper Confidence bounds applied to Trees (UCT), the most popular instantiation of MCTS; however, there remain notable gaps in our understanding of how UCT behaves in practice. In this work, we address one such gap by considering the question of whether UCT can exhibit lookahead pathology -- a paradoxical phenomenon first observed in Minimax search where greater search effort leads to worse decision-making. We introduce a novel family of synthetic games that offer rich modeling possibilities while remaining amenable to mathematical analysis. Our theoretical and experimental results suggest that UCT is indeed susceptible to pathological behavior in a range of games drawn from this family.
translated by 谷歌翻译
Several studies have been reported in the literature about SN P system and its variants. Often, the results provide universality of various variants and the classes of languages that these variants generate and recognize. The state of SN P system is its configuration. We refer to our previous result on reachability of configuration as the {\it Fundamental state equation for SN P system.} This paper provides a preliminary investigation on the behavioral and structural properties of SN P system without delay that depend primarily to this fundamental state equation. Also, we introduce the idea of configuration graph $CG_{\Pi}$ of an SN P system $\Pi$ without delay to characterize behavioral properties of $\Pi$ with respect to $CG_{\Pi}.$ The matrix $M_{\Pi}$ of an SN P system $\Pi$ without delay is used to characterize structural properties of $\Pi.$
translated by 谷歌翻译
In the 2010, matrix representation of SN P system without delay was presented while in the case of SN P systems with delay, matrix representation was suggested in the 2017. These representations brought about series of simulation of SN P systems using computer software and hardware technology. In this work, we revisit these representation and provide some observations on the behavior of the computations of SN P systems. The concept of reachability of configuration is considered in both SN P systems with and without delays. A better computation of next configuration is proposed in the case of SN P system with delay.
translated by 谷歌翻译