Some recent pieces of work in the Machine Learning (ML) literature have demonstrated the usefulness of assessing which observations are hardest to have their label predicted accurately. By identifying such instances, one may inspect whether they have any quality issues that should be addressed. Learning strategies based on the difficulty level of the observations can also be devised. This paper presents a set of meta-features that aim at characterizing which instances of a dataset are hardest to have their label predicted accurately and why they are so, aka instance hardness measures. Both classification and regression problems are considered. Synthetic datasets with different levels of complexity are built and analyzed. A Python package containing all implementations is also provided.
translated by 谷歌翻译
对制造工艺的机器化的需求很大,因此单调劳动。一些需要特定技能的制造任务(焊接,绘画等)缺乏工人。机器人已在这些任务中使用,但是它们的灵活性受到限制,因为它们仍然很难通过非专家编程/重新编程,从而使它们无法访问大多数公司。机器人离线编程(OLP)是可靠的。但是,直接来自CAD/CAM的生成路径不包括代表人类技能的相关参数,例如机器人最终效应器的方向和速度。本文提出了一个直观的机器人编程系统,以捕捉人类制造技能并将其转变为机器人程序。使用连接到工作工具的磁跟踪系统记录人类熟练工人的演示。收集的数据包括工作路径的方向和速度。位置数据是从CAD/CAM中提取的,因为磁跟踪器捕获时的误差很明显。路径姿势在笛卡尔空间中转换,并在模拟环境中进行验证。生成机器人程序并将其转移到真正的机器人。关于玻璃粘合剂应用过程的实验证明了拟议框架捕获人类技能并将其转移到机器人方面的使用和有效性的直觉。
translated by 谷歌翻译
能够分析和量化人体或行为特征的系统(称为生物识别系统)正在使用和应用变异性增长。由于其从手工制作的功能和传统的机器学习转变为深度学习和自动特征提取,因此生物识别系统的性能增加到了出色的价值。尽管如此,这种快速进步的成本仍然尚不清楚。由于其不透明度,深层神经网络很难理解和分析,因此,由错误动机动机动机的隐藏能力或决定是潜在的风险。研究人员已经开始将注意力集中在理解深度神经网络及其预测的解释上。在本文中,我们根据47篇论文的研究提供了可解释生物识别技术的当前状态,并全面讨论了该领域的发展方向。
translated by 谷歌翻译
变形攻击是不断影响深度识别系统的众多威胁之一。它包括从不同个体中选择两张面,并将它们融合到包含两者的身份信息的最终图像中。在这项工作中,我们提出了一个新颖的正规化术语,该术语考虑了两者中存在的身份信息,并促进了两个正交潜在媒介的创建。我们在FRLL数据集中评估了我们提出的方法(Orthomad),并在五个不同的数据集中培训时评估了模型的性能。我们以小的RESNET-18为骨干,我们实现了大多数实验的最新结果,而竞争性则在其他实验中结果。本文的代码将公开可用。
translated by 谷歌翻译
本文介绍了基于2022年国际生物识别技术联合会议(IJCB 2022)举行的基于隐私感知合成训练数据(SYN-MAD)的面部变形攻击检测的摘要。该竞赛吸引了来自学术界和行业的12个参与团队,并在11个不同的国家 /地区举行。最后,参与团队提交了七个有效的意见书,并由组织者进行评估。竞争是为了介绍和吸引解决方案的解决方案,这些解决方案涉及检测面部变形攻击的同时,同时出于道德和法律原因保护人们的隐私。为了确保这一点,培训数据仅限于组织者提供的合成数据。提交的解决方案提出了创新,导致在许多实验环境中表现优于所考虑的基线。评估基准现在可在以下网址获得:https://github.com/marcohuber/syn-mad-2022。
translated by 谷歌翻译
这项工作总结了2022年2022年国际生物识别联合会议(IJCB 2022)的IJCB被遮挡的面部识别竞赛(IJCB-OCFR-2022)。OCFR-2022从学术界吸引了总共3支参与的团队。最终,提交了六个有效的意见书,然后由组织者评估。在严重的面部阻塞面前,举行了竞争是为了应对面部识别的挑战。参与者可以自由使用任何培训数据,并且通过使用众所周知的数据集构成面部图像的部分来构建测试数据。提交的解决方案提出了创新,并以所考虑的基线表现出色。这项竞争的主要输出是具有挑战性,现实,多样化且公开可用的遮挡面部识别基准,并具有明确的评估协议。
translated by 谷歌翻译
在过去的十年中,在杂交无人驾驶空中水下车辆的研究中努力,机器人可以轻松飞行和潜入水中的机械适应水平。然而,大多数文献集中在物理设计,建筑物的实际问题上,最近,低水平的控制策略。在高级情报的背景下,如运动规划和与现实世界的互动的情况下已经完成。因此,我们在本文中提出了一种轨迹规划方法,允许避免避免未知的障碍和空中媒体之间的平滑过渡。我们的方法基于经典迅速探索随机树的变体,其主要优点是处理障碍,复杂的非线性动力学,模型不确定性和外部干扰的能力。该方法使用\ Hydrone的动态模型,提出具有高水下性能的混合动力车辆,但我们认为它可以很容易地推广到其他类型的空中/水生平台。在实验部分中,我们在充满障碍物的环境中显示了模拟结果,其中机器人被命令执行不同的媒体运动,展示了我们的策略的适用性。
translated by 谷歌翻译
演示攻击是对生物识别系统的经常性威胁,其中冒名顶替者试图绕过这些系统。人类经常使用背景信息作为视觉系统的上下文提示。然而,关于基于面部的系统,背景经常被丢弃,因为面部呈现攻击检测(PAD)模型主要用面部作物培训。这项工作介绍了两种设置中面板模型(包括多任务学习,对抗训练和动态帧选择)的比较研究:有和没有作物。结果表明,当图像中存在时,性能始终如一。所提出的多任务方法通过大型余量击败了玫瑰Youtu数据集的最先进的结果,其错误率为0.2%。此外,我们分析了Grad-Cam ++的模型预测,目的是调查模型对已知对人类检查有用的背景元素的程度。从这个分析来看,我们可以得出结论,背景线索在所有攻击中都不相关。因此,显示模型的能力仅在必要时利用背景信息。
translated by 谷歌翻译
SARS-COV-2向科学界提出了直接和间接的挑战。从大量国家的强制使用面部面具的强制使用最突出的间接挑战之一。面部识别方法在蒙版和未掩蔽的个体上努力执行具有类似准确性的身份验证。已经表明,这些方法的性能在面部掩模存在下显着下降,特别是如果参考图像是未被掩蔽的。我们提出了FocusFace,一种使用对比学习的多任务架构能够准确地执行蒙面的面部识别。该建议的架构被设计为从头开始训练或者在最先进的面部识别方法上工作,而不牺牲传统的面部识别任务中现有模型的能力。我们还探讨了设计对比学习模块的不同方法。结果以屏蔽掩蔽(M-M)和未掩蔽掩蔽(U-M)面验证性能提出。对于这两个设置,结果都与已发布的方法相提并论,但对于M-M而言,该方法能够优于与其比较的所有解决方案。我们进一步表明,当在现有方法顶部使用我们的方法时,培训计算成本在保持类似的表现时显着降低。在Github上提供了实施和培训的型号。
translated by 谷歌翻译
In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale of billions. However, some new cybersecurity issues have appeared together with this development. Some of these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning techniques due to the advances in this field and the increase in processing capabilities. In contrast, attackers do not stay stalled and have developed adversarial attacks focused on context modification and ML/DL evaluation evasion applied to IoT device identification solutions. This work explores the performance of hardware behavior-based individual device identification, how it is affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for individual device identification. Then, previous techniques have been compared with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the identification. However, some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training and model distillation defense techniques are selected to improve the model resilience to evasion attacks, without degrading its performance.
translated by 谷歌翻译