The traditional statistical inference is static, in the sense that the estimate of the quantity of interest does not affect the future evolution of the quantity. In some sequential estimation problems however, the future values of the quantity to be estimated depend on the estimate of its current value. This type of estimation problems has been formulated as the dynamic inference problem. In this work, we formulate the Bayesian learning problem for dynamic inference, where the unknown quantity-generation model is assumed to be randomly drawn according to a random model parameter. We derive the optimal Bayesian learning rules, both offline and online, to minimize the inference loss. Moreover, learning for dynamic inference can serve as a meta problem, such that all familiar machine learning problems, including supervised learning, imitation learning and reinforcement learning, can be cast as its special cases or variants. Gaining a good understanding of this unifying meta problem thus sheds light on a broad spectrum of machine learning problems as well.
translated by 谷歌翻译
Existing 3D-aware image synthesis approaches mainly focus on generating a single canonical object and show limited capacity in composing a complex scene containing a variety of objects. This work presents DisCoScene: a 3Daware generative model for high-quality and controllable scene synthesis. The key ingredient of our method is a very abstract object-level representation (i.e., 3D bounding boxes without semantic annotation) as the scene layout prior, which is simple to obtain, general to describe various scene contents, and yet informative to disentangle objects and background. Moreover, it serves as an intuitive user control for scene editing. Based on such a prior, the proposed model spatially disentangles the whole scene into object-centric generative radiance fields by learning on only 2D images with the global-local discrimination. Our model obtains the generation fidelity and editing flexibility of individual objects while being able to efficiently compose objects and the background into a complete scene. We demonstrate state-of-the-art performance on many scene datasets, including the challenging Waymo outdoor dataset. Project page: https://snap-research.github.io/discoscene/
translated by 谷歌翻译
The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is the world's largest single-dish radio telescope. Its large reflecting surface achieves unprecedented sensitivity but is prone to damage, such as dents and holes, caused by naturally-occurring falling objects. Hence, the timely and accurate detection of surface defects is crucial for FAST's stable operation. Conventional manual inspection involves human inspectors climbing up and examining the large surface visually, a time-consuming and potentially unreliable process. To accelerate the inspection process and increase its accuracy, this work makes the first step towards automating the inspection of FAST by integrating deep-learning techniques with drone technology. First, a drone flies over the surface along a predetermined route. Since surface defects significantly vary in scale and show high inter-class similarity, directly applying existing deep detectors to detect defects on the drone imagery is highly prone to missing and misidentifying defects. As a remedy, we introduce cross-fusion, a dedicated plug-in operation for deep detectors that enables the adaptive fusion of multi-level features in a point-wise selective fashion, depending on local defect patterns. Consequently, strong semantics and fine-grained details are dynamically fused at different positions to support the accurate detection of defects of various scales and types. Our AI-powered drone-based automated inspection is time-efficient, reliable, and has good accessibility, which guarantees the long-term and stable operation of FAST.
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Fully supervised salient object detection (SOD) has made considerable progress based on expensive and time-consuming data with pixel-wise annotations. Recently, to relieve the labeling burden while maintaining performance, some scribble-based SOD methods have been proposed. However, learning precise boundary details from scribble annotations that lack edge information is still difficult. In this paper, we propose to learn precise boundaries from our designed synthetic images and labels without introducing any extra auxiliary data. The synthetic image creates boundary information by inserting synthetic concave regions that simulate the real concave regions of salient objects. Furthermore, we propose a novel self-consistent framework that consists of a global integral branch (GIB) and a boundary-aware branch (BAB) to train a saliency detector. GIB aims to identify integral salient objects, whose input is the original image. BAB aims to help predict accurate boundaries, whose input is the synthetic image. These two branches are connected through a self-consistent loss to guide the saliency detector to predict precise boundaries while identifying salient objects. Experimental results on five benchmarks demonstrate that our method outperforms the state-of-the-art weakly supervised SOD methods and further narrows the gap with the fully supervised methods.
translated by 谷歌翻译
Traditional deep learning compilers rely on heuristics for subgraph generation, which impose extra constraints on graph optimization, e.g., each subgraph can only contain at most one complex operator. In this paper, we propose AGO, a framework for graph optimization with arbitrary structures to boost the inference performance of deep models by removing such constraints. To create new optimization opportunities for complicated subgraphs, we propose intensive operator fusion, which can effectively stitch multiple complex operators together for better performance. Further, we design a graph partitioning scheme that allows an arbitrary structure for each subgraph while guaranteeing the acyclic property among all generated subgraphs. Additionally, to enable efficient performance tuning on complicated subgraphs, we devise a novel divide-and-conquer tuning mechanism to orchestrate different system components. Through extensive experiments on various neural networks and mobile devices, we show that our system can improve the inference performance by up to 3.3x when compared with state-of-the-art deep compilers.
translated by 谷歌翻译
The problem of covariate-shift generalization has attracted intensive research attention. Previous stable learning algorithms employ sample reweighting schemes to decorrelate the covariates when there is no explicit domain information about training data. However, with finite samples, it is difficult to achieve the desirable weights that ensure perfect independence to get rid of the unstable variables. Besides, decorrelating within stable variables may bring about high variance of learned models because of the over-reduced effective sample size. A tremendous sample size is required for these algorithms to work. In this paper, with theoretical justification, we propose SVI (Sparse Variable Independence) for the covariate-shift generalization problem. We introduce sparsity constraint to compensate for the imperfectness of sample reweighting under the finite-sample setting in previous methods. Furthermore, we organically combine independence-based sample reweighting and sparsity-based variable selection in an iterative way to avoid decorrelating within stable variables, increasing the effective sample size to alleviate variance inflation. Experiments on both synthetic and real-world datasets demonstrate the improvement of covariate-shift generalization performance brought by SVI.
translated by 谷歌翻译
Over-parameterization of deep neural networks (DNNs) has shown high prediction accuracy for many applications. Although effective, the large number of parameters hinders its popularity on resource-limited devices and has an outsize environmental impact. Sparse training (using a fixed number of nonzero weights in each iteration) could significantly mitigate the training costs by reducing the model size. However, existing sparse training methods mainly use either random-based or greedy-based drop-and-grow strategies, resulting in local minimal and low accuracy. In this work, to assist explainable sparse training, we propose important weights Exploitation and coverage Exploration to characterize Dynamic Sparse Training (DST-EE), and provide quantitative analysis of these two metrics. We further design an acquisition function and provide the theoretical guarantees for the proposed method and clarify its convergence property. Experimental results show that sparse models (up to 98\% sparsity) obtained by our proposed method outperform the SOTA sparse training methods on a wide variety of deep learning tasks. On VGG-19 / CIFAR-100, ResNet-50 / CIFAR-10, ResNet-50 / CIFAR-100, our method has even higher accuracy than dense models. On ResNet-50 / ImageNet, the proposed method has up to 8.2\% accuracy improvement compared to SOTA sparse training methods.
translated by 谷歌翻译
Although significant progress has been made in few-shot learning, most of existing few-shot learning methods require supervised pre-training on a large amount of samples of base classes, which limits their generalization ability in real world application. Recently, large-scale self-supervised vision-language models (e.g., CLIP) have provided a new paradigm for transferable visual representation learning. However, the pre-trained VLPs may neglect detailed visual information that is difficult to describe by language sentences, but important for learning an effective classifier in few-shot classification. To address the above problem, we propose a new framework, named Semantic-guided Visual Adapting (SgVA), which can effectively extend vision-language pre-trained models to produce discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation. The implicit knowledge distillation is designed to transfer the fine-grained cross-modal knowledge to guide the updating of the vision adapter. State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
translated by 谷歌翻译