Recent years witnessed the breakthrough of face recognition with deep convolutional neural networks. Dozens of papers in the field of FR are published every year. Some of them were applied in the industrial community and played an important role in human life such as device unlock, mobile payment, and so on. This paper provides an introduction to face recognition, including its history, pipeline, algorithms based on conventional manually designed features or deep learning, mainstream training, evaluation datasets, and related applications. We have analyzed and compared state-of-the-art works as many as possible, and also carefully designed a set of experiments to find the effect of backbone size and data distribution. This survey is a material of the tutorial named The Practical Face Recognition Technology in the Industrial World in the FG2023.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.
translated by 谷歌翻译
Tensor program tuning is a non-convex objective optimization problem, to which search-based approaches have proven to be effective. At the core of the search-based approaches lies the design of the cost model. Though deep learning-based cost models perform significantly better than other methods, they still fall short and suffer from the following problems. First, their feature extraction heavily relies on expert-level domain knowledge in hardware architectures. Even so, the extracted features are often unsatisfactory and require separate considerations for CPUs and GPUs. Second, a cost model trained on one hardware platform usually performs poorly on another, a problem we call cross-hardware unavailability. In order to address these problems, we propose TLP and MTLTLP. TLP is a deep learning-based cost model that facilitates tensor program tuning. Instead of extracting features from the tensor program itself, TLP extracts features from the schedule primitives. We treat schedule primitives as tensor languages. TLP is thus a Tensor Language Processing task. In this way, the task of predicting the tensor program latency through the cost model is transformed into a natural language processing (NLP) regression task. MTL-TLP combines Multi-Task Learning and TLP to cope with the cross-hardware unavailability problem. We incorporate these techniques into the Ansor framework and conduct detailed experiments. Results show that TLP can speed up the average search time by 9.1X and 3.0X on CPU and GPU workloads, respectively, compared to the state-of-the-art implementation. MTL-TLP can achieve a speed-up of 4.7X and 2.9X on CPU and GPU workloads, respectively, using only 7% of the target hardware data.
translated by 谷歌翻译
With the development and progress of science and technology, the Internet of Things(IoT) has gradually entered people's lives, bringing great convenience to our lives and improving people's work efficiency. Specifically, the IoT can replace humans in jobs that they cannot perform. As a new type of IoT vehicle, the current status and trend of research on Unmanned Aerial Vehicle(UAV) is gratifying, and the development prospect is very promising. However, privacy and communication are still very serious issues in drone applications. This is because most drones still use centralized cloud-based data processing, which may lead to leakage of data collected by drones. At the same time, the large amount of data collected by drones may incur greater communication overhead when transferred to the cloud. Federated learning as a means of privacy protection can effectively solve the above two problems. However, federated learning when applied to UAV networks also needs to consider the heterogeneity of data, which is caused by regional differences in UAV regulation. In response, this paper proposes a new algorithm FedBA to optimize the global model and solves the data heterogeneity problem. In addition, we apply the algorithm to some real datasets, and the experimental results show that the algorithm outperforms other algorithms and improves the accuracy of the local model for UAVs.
translated by 谷歌翻译
最近,通过“向导”模拟游戏收集了一类以任务为导向的对话(TOD)数据集。但是,《巫师》数据实际上是模拟的数据,因此与现实生活中的对话根本不同,这些对话更加嘈杂和随意。最近,Seretod挑战赛是组织的,并发布了Mobilecs数据集,该数据集由来自中国移动的真实用户和客户服务人员之间的真实世界对话框组成。基于Mobilecs数据集,Seretod挑战具有两个任务,不仅评估了对话系统本身的构建,而且还检查了对话框成绩单中的信息提取,这对于建立TOD的知识库至关重要。本文主要介绍了Mobilecs数据集对这两项任务的基线研究。我们介绍了如何构建两个基线,遇到的问题以及结果。我们预计基线可以促进令人兴奋的未来研究,以建立针对现实生活任务的人类机器人对话系统。
translated by 谷歌翻译
掌握姿势估计是机器人与现实世界互动的重要问题。但是,大多数现有方法需要事先可用的精确3D对象模型或大量的培训注释。为了避免这些问题,我们提出了transrasp,一种类别级别的rasp姿势估计方法,该方法通过仅标记一个对象实例来预测一类对象的掌握姿势。具体而言,我们根据其形状对应关系进行掌握姿势转移,并提出一个掌握姿势细化模块,以进一步微调抓地力姿势,以确保成功的掌握。实验证明了我们方法对通过转移的抓握姿势实现高质量抓地力的有效性。我们的代码可在https://github.com/yanjh97/transgrasp上找到。
translated by 谷歌翻译
最近,由于其广泛的商业价值,从视觉丰富的文档(例如门票和简历)中自动提取信息已成为一个热门而重要的研究主题。大多数现有方法将此任务分为两个小节:用于从原始文档图像中获取纯文本的文本阅读部分以及用于提取密钥内容的信息提取部分。这些方法主要集中于改进第二个方法,同时忽略了这两个部分高度相关。本文提出了一个统一的端到端信息提取框架,从视觉上富含文档中提出,文本阅读和信息提取可以通过精心设计的多模式上下文块相互加强。具体而言,文本阅读部分提供了多模式功能,例如视觉,文本和布局功能。开发了多模式上下文块,以融合生成的多模式特征,甚至是从预训练的语言模型中获得的先验知识,以提供更好的语义表示。信息提取部分负责使用融合上下文功能生成密钥内容。该框架可以以端到端的可训练方式进行培训,从而实现全球优化。更重要的是,我们将视觉丰富的文档定义为跨两个维度的四个类别,即布局和文本类型。对于每个文档类别,我们提供或推荐相应的基准,实验设置和强大的基准,以弥补该研究领域缺乏统一评估标准的问题。报告了对四种基准测试的广泛实验(从固定布局到可变布局,从完整的文本到半未结构化的文本),证明了所提出的方法的有效性。数据,源代码和模型可用。
translated by 谷歌翻译
基于内部语言模型估计(ILME)语言模型(LM)融合已显示出明显改善的识别结果,而识别域内和跨域语音识别任务的常规浅融合。在本文中,我们试图将ILME方法应用于跨域代码转换语音识别(CSSR)工作。具体而言,我们的好奇心来自几个方面。首先,我们很好奇基于ILME的LM融合对内域和跨域CSSR任务的有效性。我们在不合并两个代码转换域的情况下对此进行验证。更重要的是,我们通过合并两个单语言数据集训练端到端(E2E)语音识别模型,并观察到拟议的基于ILME的LM Fusion对CSSR的功效。来自东南亚和另一个中国大陆CS数据集的SEAME的实验结果证明了拟议的基于ILME的LM融合方法的有效性。
translated by 谷歌翻译
基于激光雷达的本地化方法是用于大规模导航任务的基本模块,例如最后一英里交付和自动驾驶,并且本地化鲁棒性高度依赖于观点和3D功能提取。我们以前的工作提供了一个观点不变的描述符来处理观点差异;但是,全局描述符在无监督聚类中的信号噪声比率低,从而降低了可区分的特征提取能力。我们开发了SphereVlad ++,这是这项工作中一种引起注意的观点不变的位置识别方法。 SphereVlad ++在每个唯一区域的球形视角上投射点云,并通过全局3D几何分布捕获本地特征及其依赖关系之间的上下文连接。作为回报,全局描述符中的群集元素以本地和全球几何形式为条件,并支持SphereVlad的原始视点不变属性。在实验中,我们评估了SphereVlad ++在匹兹堡市的公共Kitti360数据集和自我生成的数据集上的本地化性能。实验结果表明,SphereVlad ++在小甚至完全逆转的视点差异下优于所有相对最新的3D位置识别方法,并显示0.69%和15.81%的成功检索率,比第二好的检索率更好。低计算要求和高时间效率也有助于其用于低成本机器人的应用。
translated by 谷歌翻译