我们提出了一种方法,用于在主动电分布网络中考虑使用脆弱节点识别的最佳DERS分配,并将这些节点命名为关键节点。这些关键节点的功率变化将显着影响其他链接节点的运行,因此这些节点适合使用,并且认为最适合DERS放置。我们在标准的IEEE-123测试馈线系统中证明了我们的方法评估。最初,我们使用图理论将分布系统划分为最佳微电网网络。使用图神经网络体系结构对分区进行了验证,以适当形成微电网。此外,使用有效的可测量分析(例如Granger因果关系),我们确定了分区的微电网中的关键节点和在这些节点上的DERS放置,从而提高了网络可靠性和弹性。此外,为了验证系统性能和能量弹性,我们计算了微电网网络的渗透阈值,该网络指示了在这些关键节点上掺入DER后系统弹性。这项提出的有关首先的方法可确保通过分布网络中数据驱动的分析方法来确定有效的微电网分配,关键节点的识别,最佳DERS分配和系统弹性评估。
translated by 谷歌翻译
最近,电分配系统被分布式能源(DER)广泛渗透,以满足能量需求,以一般的看法,即增强系统的弹性。但是,由于其间歇性可用性,天气状况的动态,非线性,复杂性的引入等各种因素,这可能是不利的。这需要对我们的方法在这里提出的对系统弹性的详细理解。我们介绍了一种使用复杂网络理论的方法,以确定与太阳能PV生成在各种不良配置下合并时分配系统的弹性。获得了不同条件的复杂相关网络,并计算了各种网络参数以识别这些网络的弹性。所提出的方法可以确定系统中太阳能电池板的托管能力,同时在不同的不需要条件下保持弹性有助于获得系统中太阳能电池板的最佳分配拓扑。所提出的方法还标识了对变化高度敏感的关键节点,并可能将系统推向非弹性。该框架在IEEE-123测试馈线系统上使用了使用GridLab-D生成的时间序列数据,并使用复杂的网络和机器学习模型进行了多种分析。
translated by 谷歌翻译
与计算机视觉合并的基于无人机的遥感系统(UAV)遥感系统具有协助建筑物建设和灾难管理的潜力,例如地震期间的损害评估。可以通过检查来评估建筑物到地震的脆弱性,该检查考虑到相关组件的预期损害进展以及组件对结构系统性能的贡献。这些检查中的大多数是手动进行的,导致高利用人力,时间和成本。本文提出了一种通过基于无人机的图像数据收集和用于后处理的软件库来自动化这些检查的方法,该方法有助于估算地震结构参数。这里考虑的关键参数是相邻建筑物,建筑计划形状,建筑计划区域,屋顶上的对象和屋顶布局之间的距离。通过使用距离测量传感器以及通过Google Earth获得的数据进行的现场测量,可以验证所提出的方法在估计上述参数估算上述参数方面的准确性。可以从https://uvrsabi.github.io/访问其他详细信息和代码。
translated by 谷歌翻译
反向工程从其他表示形式进行的CAD形状是许多下游应用程序的重要几何处理步骤。在这项工作中,我们介绍了一种新型的神经网络体系结构,以解决这项具有挑战性的任务,并使用可编辑,受约束的棱镜CAD模型近似平滑的签名距离函数。在训练过程中,我们的方法通过将形状分解为一系列2D轮廓图像和1D包膜函数来重建体素空间中的输入几何形状。然后可以以不同的方式重新组合这些,以允许定义几何损失函数。在推断期间,我们通过首先搜索2D约束草图的数据库来获取CAD数据,以找到近似配置文件图像的曲线,然后将它们挤出并使用布尔操作来构建最终的CAD模型。我们的方法比其他方法更接近目标形状,并输出与现有CAD软件兼容的高度可编辑的约束参数草图。
translated by 谷歌翻译
我们提出了Kkexgen,这是一种用于计算机辅助设计(CAD)构造序列的新型自回旋生成模型,其中包含草图和伸出的建模操作。我们的模型利用不同的变压器体系结构编码构造序列的拓扑,几何和挤压变化为分离的代码簿。自回归变压器解码器生成CAD构造序列,共享代码簿向量指定的某些属性。广泛的实验表明,我们的删除代码书表示会生成多样化和高质量的CAD模型,增强用户控制,并有效地探索设计空间。该代码可在https://samxuxiang.github.io/skexgen上找到。
translated by 谷歌翻译
物理产品通常是复杂的组件,组合计算机辅助设计(CAD)软件中建模的多个3D零件。CAD Designers通过使用称为关节的约束对齐各个部件来构建这些程序集。在本文中,我们介绍了可连接,一种基于学习的方法,可以将部件组合在一起以形成关节。可加入使用标准参数CAD文件中提供的弱监管,而无需对象类标签或人类指导。我们的研究结果表明,通过对实体模型的图表表示进行网络预测,我们可以优于多种基线方法,精度(79.53%)接近人类性能(80%)。最后,为了支持未来的研究,我们释放了Fusion 360 Gallery集合数据集,其中包含了具有关于关节,接触表面,孔和底层装配图结构的丰富信息的程序集。
translated by 谷歌翻译
我们介绍Samanantar,是最大的公开可用的并行Corpora Collection,用于指示语言。该集合中的英语和11个上线语言之间总共包含4970万句对(来自两种语言系列)。具体而言,我们从现有的公共可用并行基层编译1240万句对,另外,从网络上挖掘3740万句对,导致4倍增加。我们通过组合许多语料库,工具和方法来挖掘网站的并行句子:(a)Web爬行单格式语料库,(b)文档OCR,用于从扫描的文档中提取句子,(c)用于对齐句子的多语言表示模型,以及(d)近似最近的邻居搜索搜索大量句子。人类评估新矿业的Corpora的样本验证了11种语言的高质量平行句子。此外,我们使用英语作为枢轴语言,从英式并行语料库中提取所有55个指示语言对之间的834百万句子对。我们培训了跨越Samanantar上所有这些语言的多语种NMT模型,这在公开可用的基准上表现出现有的模型和基准,例如弗洛雷斯,建立萨曼塔尔的效用。我们的数据和模型可在Https://indicnlp.ai4bharat.org/samanantar/上公开提供,我们希望他们能够帮助推进NMT和Multibingual NLP的研究。
translated by 谷歌翻译
Quadruped robots are currently used in industrial robotics as mechanical aid to automate several routine tasks. However, presently, the usage of such a robot in a domestic setting is still very much a part of the research. This paper discusses the understanding and virtual simulation of such a robot capable of detecting and understanding human emotions, generating its gait, and responding via sounds and expression on a screen. To this end, we use a combination of reinforcement learning and software engineering concepts to simulate a quadruped robot that can understand emotions, navigate through various terrains and detect sound sources, and respond to emotions using audio-visual feedback. This paper aims to establish the framework of simulating a quadruped robot that is emotionally intelligent and can primarily respond to audio-visual stimuli using motor or audio response. The emotion detection from the speech was not as performant as ERANNs or Zeta Policy learning, still managing an accuracy of 63.5%. The video emotion detection system produced results that are almost at par with the state of the art, with an accuracy of 99.66%. Due to its "on-policy" learning process, the PPO algorithm was extremely rapid to learn, allowing the simulated dog to demonstrate a remarkably seamless gait across the different cadences and variations. This enabled the quadruped robot to respond to generated stimuli, allowing us to conclude that it functions as predicted and satisfies the aim of this work.
translated by 谷歌翻译
Searching long egocentric videos with natural language queries (NLQ) has compelling applications in augmented reality and robotics, where a fluid index into everything that a person (agent) has seen before could augment human memory and surface relevant information on demand. However, the structured nature of the learning problem (free-form text query inputs, localized video temporal window outputs) and its needle-in-a-haystack nature makes it both technically challenging and expensive to supervise. We introduce Narrations-as-Queries (NaQ), a data augmentation strategy that transforms standard video-text narrations into training data for a video query localization model. Validating our idea on the Ego4D benchmark, we find it has tremendous impact in practice. NaQ improves multiple top models by substantial margins (even doubling their accuracy), and yields the very best results to date on the Ego4D NLQ challenge, soundly outperforming all challenge winners in the CVPR and ECCV 2022 competitions and topping the current public leaderboard. Beyond achieving the state-of-the-art for NLQ, we also demonstrate unique properties of our approach such as gains on long-tail object queries, and the ability to perform zero-shot and few-shot NLQ.
translated by 谷歌翻译
Machine Translation (MT) system generally aims at automatic representation of source language into target language retaining the originality of context using various Natural Language Processing (NLP) techniques. Among various NLP methods, Statistical Machine Translation(SMT). SMT uses probabilistic and statistical techniques to analyze information and conversion. This paper canvasses about the development of bilingual SMT models for translating English to fifteen low-resource Indian Languages (ILs) and vice versa. At the outset, all 15 languages are briefed with a short description related to our experimental need. Further, a detailed analysis of Samanantar and OPUS dataset for model building, along with standard benchmark dataset (Flores-200) for fine-tuning and testing, is done as a part of our experiment. Different preprocessing approaches are proposed in this paper to handle the noise of the dataset. To create the system, MOSES open-source SMT toolkit is explored. Distance reordering is utilized with the aim to understand the rules of grammar and context-dependent adjustments through a phrase reordering categorization framework. In our experiment, the quality of the translation is evaluated using standard metrics such as BLEU, METEOR, and RIBES
translated by 谷歌翻译