随着越来越受欢迎和易于访问互联网,在线谣言的问题正在升级。人们依靠社交媒体,易于获取信息,但将牺牲猎物陷入错误信息。在线帖子缺乏可信度评估技术,以便在到达时立即识别谣言。现有研究制定了通过开发机器学习和深度学习算法来打击在线谣言的若干机制。到目前为止的文献为凭借巨大的训练数据集提供了谣言分类的监督框架。然而,在监督学习的在线情景中,动态谣言识别变得困难。在线谣言的早期检测是一个具有挑战性的任务,与他们有关的研究相对较少。只要在线出现,就需要小时才能识别谣言。这项工作提出了一种简洁的谣言检测框架,依赖于在线帖子的内容和使用最先进的聚类技术。拟议的体系结构优于几种现有基线,并且比几种监督技术更好。提出的方法,轻巧,简单,坚固,提供了作为在线谣言识别的工具采用的适用性。
translated by 谷歌翻译
Model counting is a fundamental problem which has been influential in many applications, from artificial intelligence to formal verification. Due to the intrinsic hardness of model counting, approximate techniques have been developed to solve real-world instances of model counting. This paper designs a new anytime approach called PartialKC for approximate model counting. The idea is a form of partial knowledge compilation to provide an unbiased estimate of the model count which can converge to the exact count. Our empirical analysis demonstrates that PartialKC achieves significant scalability and accuracy over prior state-of-the-art approximate counters, including satss and STS. Interestingly, the empirical results show that PartialKC reaches convergence for many instances and therefore provides exact model counting performance comparable to state-of-the-art exact counters.
translated by 谷歌翻译
网络威胁智能(CTI)是描述威胁媒介,漏洞和攻击的信息,通常用作基于AI的网络防御系统(例如网络安全知识图(CKG))的培训数据。非常需要开发可访问社区的数据集来培训现有的基于AI的网络安全管道,以有效,准确地从CTI中提取有意义的见解。我们已经从各种开放源中创建了一个初始的非结构化CTI语料库,我们使用SPACY框架并探索自学习方法来自动识别网络安全实体,用于训练和测试网络安全实体模型。我们还描述了应用网络安全域实体与Wikidata现有世界知识联系起来的方法。我们未来的工作将调查和测试Spacy NLP工具,并创建方法,以连续整合从文本中提取的新信息。
translated by 谷歌翻译
深度学习的最新发展之一是广义的零射击学习(GZSL),旨在识别所见类和看不见的类别的对象,而仅提供了来自可见类的标记示例。在过去的几年中,GZSL抓住了牵引力,并提出了几种模型来解决这个问题。尽管在计算机视觉和自然语言处理等领域进行了大量有关GZSL的研究,但尚未进行此类研究来处理时间序列数据。 GZSL用于应用程序,例如检测ECG和EEG数据的异常,并从传感器,光谱仪和其他设备数据中识别出看不见的类。在这方面,我们提出了一个时间序列-GZSL(LETS -GZSL)模型的潜在嵌入方式,该模型可以解决GZSL的问题用于时间序列分类(TSC)。我们利用基于嵌入式的方法并将其与属性向量相结合以预测最终类标签。我们报告了广泛流行的UCR档案数据集的结果。我们的框架能够在大多数数据集上实现至少55%的谐波平均值,除非看不见的类的数量大于3,否则数据量非常低(小于100个培训示例)。
translated by 谷歌翻译
机器学习已随着医疗,法律和运输等各种安全领域的应用而无所不在。在这些领域中,机器学习提供的高风险决策需要研究人员设计可解释的模型,在该模型中,预测对人类是可以理解的。在可解释的机器学习中,基于规则的分类器在通过包含输入功能的一组规则来表示决策边界方面特别有效。基于规则的分类器的解释性通常与规则的规模有关,其中较小的规则被认为更容易解释。要学习这样的分类器,蛮力的直接方法是考虑一个优化问题,该问题试图学习具有接近最大准确性的最小分类规则。由于其组合性质,该优化问题在计算上是可悲的,因此,在大型数据集中,该问题无法扩展。为此,在本文中,我们研究了基于学习规则的分类器的准确性,可解释性和可伸缩性之间的三角关系。本文的贡献是一个可解释的学习框架IMLI,这是基于最大的满意度(MAXSAT),用于在命题逻辑中表达的合成分类规则。尽管在过去十年中MaxSat解决方案取得了进展,但基于最直接的MaxSat解决方案仍无法扩展。因此,我们通过整合迷你批次学习和迭代规则学习,将有效的增量学习技术纳入了MaxSAT公式中。在我们的实验中,IMLI在预测准确性,可解释性和可伸缩性之间取得了最佳平衡。作为一个应用程序,我们将IMLI部署在学习流行的可解释分类器(例如决策清单和决策集)中。
translated by 谷歌翻译
大脑电脑接口(BCI)系统通过无肌肉活动的直接测量来支持通信。需要验证大脑电脑界面系统,以严重残疾人的真实世界使用的长期研究,并必须实施其普遍传播的有效和可行的模型。最后,必须提高BCI性能的日常和时刻瞬间可靠性,以便接近自然肌肉的功能的可靠性。本次审查讨论了BCI系统的结构和功能,阐明了术语集成和进度,并且还基于用于BCI系统的侵入性记录技术的当前可用性来识别和阐述该领域的机遇。
translated by 谷歌翻译
我们提出了一种适应课程训练框架,适用于少量分类的最先进的元学习技术。基于课程的培训普遍试图通过逐步增加培训复杂性来实现培训复杂性以实现增量概念学习。由于元学习者的目标是学习如何从尽可能少的样本中学习,那些样本的确切数量(即支撑集的大小)是作为给定任务困难的自然代理。我们定义了一个简单但新颖的课程计划,从更大的支持大小开始,并且逐步减少整个训练,最终匹配测试设置的所需拍摄大小。这种提出的方​​法提高了学习效率以及泛化能力。我们在两次拍摄图像分类任务上使用MAML算法进行了实验,显示了课程训练框架的显着收益。消融研究证实了我们所提出的方法的独立性,从模型架构以及元学习的普通参数
translated by 谷歌翻译