在本文中,我们提出了一种与渔业相关数据的方法,该方法使我们能够通过多个可以利用众包接口的培训和生产循环在数据集上迭代标记的图像数据集。我们将算法及其结果介绍在使用海底自动水下车辆收集的两组单独的图像数据上。第一个数据集由2,026个完全未标记的图像组成,而第二个数据集由21,968张图像组成,这些图像由专家注释。我们的结果表明,使用小子集进行培训,并迭代以构建较大的标记数据,从而使我们能够收敛到带有少量迭代的完全注释数据集。即使在专家标记的数据集的情况下,该方法论的单个迭代也通过发现与鱼层相关的鱼类相关标签的其他复杂示例,也很小,或者被与水下图像相关的对比度限制所掩盖,从而改善了标签。
translated by 谷歌翻译