本文介绍了一种简单的有效学习算法,用于一般顺序决策。该算法将探索的乐观与模型估计的最大似然估计相结合,因此被命名为OMLE。我们证明,Omle了解了多项式数量的样本中一系列非常丰富的顺序决策问题的近乎最佳策略。这个丰富的类别不仅包括大多数已知的基于模型的基于模型的强化学习(RL)问题(例如表格MDP,计算的MDP,低证人等级问题,表格弱弱/可观察到的POMDP和多步可解码的POMDP),但是同样,许多新的具有挑战性的RL问题,尤其是在可观察到的部分环境中,这些问题以前尚不清楚。值得注意的是,本文解决的新问题包括(1)具有连续观察和功能近似的可观察到的POMDP,在其中我们实现了完全独立于观察空间的第一个样品复杂性; (2)条件良好的低级顺序决策问题(也称为预测状态表示(PSRS)),其中包括并概括了所有已知的可牵引的POMDP示例,这些示例在更固有的表示下; (3)在帆条件下进行一般顺序决策问题,这统一了我们在完全可观察和部分可观察的设置中对基于模型的RL的现有理解。帆条件是由本文确定的,可以将其视为贝尔曼/证人等级的自然概括,以解决部分可观察性。
translated by 谷歌翻译
语义细分是计算机视觉中的一个流行研究主题,并且在其上做出了许多努力,结果令人印象深刻。在本文中,我们打算搜索可以实时运行此问题的最佳网络结构。为了实现这一目标,我们共同搜索深度,通道,扩张速率和特征空间分辨率,从而导致搜索空间约为2.78*10^324可能的选择。为了处理如此大的搜索空间,我们利用差异架构搜索方法。但是,需要离散地使用使用现有差异方法搜索的体系结构参数,这会导致差异方法找到的架构参数与其离散版本作为体系结构搜索的最终解决方案之间的离散差距。因此,我们从解决方案空间正则化的创新角度来缓解离散差距的问题。具体而言,首先提出了新型的解决方案空间正则化(SSR)损失,以有效鼓励超级网络收敛到其离散。然后,提出了一种新的分层和渐进式解决方案空间缩小方法,以进一步实现较高的搜索效率。此外,我们从理论上表明,SSR损失的优化等同于L_0-NORM正则化,这说明了改善的搜索评估差距。综合实验表明,提出的搜索方案可以有效地找到最佳的网络结构,该结构具有较小的模型大小(1 m)的分割非常快的速度(175 fps),同时保持可比较的精度。
translated by 谷歌翻译
本文提出了用于学习两人零和马尔可夫游戏的小说,端到端的深钢筋学习算法。我们的目标是找到NASH平衡政策,这些策略不受对抗对手的剥削。本文与以前在广泛形式的游戏中找到NASH平衡的努力不同,这些游戏具有树结构的过渡动态和离散的状态空间,本文着重于具有一般过渡动态和连续状态空间的马尔可夫游戏。我们提出了(1)NASH DQN算法,该算法将DQN与nash finding subroutine集成在一起的联合价值函数; (2)NASH DQN利用算法,该算法还采用了指导代理商探索的剥削者。我们的算法是理论算法的实用变体,这些变体可以保证在基本表格设置中融合到NASH平衡。对表格示例和两个玩家Atari游戏的实验评估证明了针对对抗对手的拟议算法的鲁棒性,以及对现有方法的优势性能。
translated by 谷歌翻译
零和游戏中的理想策略不仅应授予玩家的平均奖励,不少于NASH均衡的价值,而且还应在次优时利用(自适应)对手。尽管马尔可夫游戏中的大多数现有作品都专注于以前的目标,但我们是否可以同时实现这两个目标仍然开放。为了解决这个问题,这项工作在马尔可夫游戏中与对抗对手进行了无重组学习,当时与事后最佳的固定政策竞争时。沿着这个方向,我们提出了一组新的正面和负面结果:当每个情节结束时对手的政策被揭示时,我们提出了实现$ \ sqrt {k} $的新的有效算法 - 遗憾的是(遗憾的是) 1)基线政策类别很小或(2)对手的政策类别很小。当两种条件不正确时,这与指数下限相辅相成。当未揭示对手的政策时,即使在最有利的情况下,当两者都是正确的情况下,我们也会证明统计硬度结果。我们的硬度结果比仅涉及计算硬度或需要进一步限制算法的现有硬度结果要强得多。
translated by 谷歌翻译
Tensor robust principal component analysis (RPCA), which seeks to separate a low-rank tensor from its sparse corruptions, has been crucial in data science and machine learning where tensor structures are becoming more prevalent. While powerful, existing tensor RPCA algorithms can be difficult to use in practice, as their performance can be sensitive to the choice of additional hyperparameters, which are not straightforward to tune. In this paper, we describe a fast and simple self-supervised model for tensor RPCA using deep unfolding by only learning four hyperparameters. Despite its simplicity, our model expunges the need for ground truth labels while maintaining competitive or even greater performance compared to supervised deep unfolding. Furthermore, our model is capable of operating in extreme data-starved scenarios. We demonstrate these claims on a mix of synthetic data and real-world tasks, comparing performance against previously studied supervised deep unfolding methods and Bayesian optimization baselines.
translated by 谷歌翻译
Length extrapolation is a desirable property that permits training a transformer language model on short sequences and retaining similar perplexities when the model is tested on substantially longer sequences. A relative positional embedding mechanism applied on the transformer self-attention matrix, ALiBi, demonstrates the length extrapolation property with the widest usage to date. In this paper, we show that ALiBi surprisingly does not utilize tokens further than the training sequence length, which can be explained by its implicit windowed attention effect that aligns the receptive field during training and testing stages. Inspired by ALiBi and the receptive filed alignment hypothesis, we propose another transformer positional embedding design named~\textbf{Sandwich} that uses longer than training sequence length information, and it is a greatly simplified formulation of the earliest proposed Sinusoidal positional embedding. Finally, we show that both ALiBi and Sandwich enable efficient inference thanks to their implicit windowed attention effect.
translated by 谷歌翻译
Privacy policies provide individuals with information about their rights and how their personal information is handled. Natural language understanding (NLU) technologies can support individuals and practitioners to understand better privacy practices described in lengthy and complex documents. However, existing efforts that use NLU technologies are limited by processing the language in a way exclusive to a single task focusing on certain privacy practices. To this end, we introduce the Privacy Policy Language Understanding Evaluation (PLUE) benchmark, a multi-task benchmark for evaluating the privacy policy language understanding across various tasks. We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training. We demonstrate that domain-specific pre-training offers performance improvements across all tasks. We release the benchmark to encourage future research in this domain.
translated by 谷歌翻译
Well-designed prompts can guide text-to-image models to generate amazing images. However, the performant prompts are often model-specific and misaligned with user input. Instead of laborious human engineering, we propose prompt adaptation, a general framework that automatically adapts original user input to model-preferred prompts. Specifically, we first perform supervised fine-tuning with a pretrained language model on a small collection of manually engineered prompts. Then we use reinforcement learning to explore better prompts. We define a reward function that encourages the policy to generate more aesthetically pleasing images while preserving the original user intentions. Experimental results on Stable Diffusion show that our method outperforms manual prompt engineering in terms of both automatic metrics and human preference ratings. Moreover, reinforcement learning further boosts performance, especially on out-of-domain prompts. The pretrained checkpoints are available at https://aka.ms/promptist. The demo can be found at https://aka.ms/promptist-demo.
translated by 谷歌翻译
Open-retrieval conversational machine reading comprehension (OCMRC) simulates real-life conversational interaction scenes. Machines are required to make a decision of "Yes/No/Inquire" or generate a follow-up question when the decision is "Inquire" based on retrieved rule texts, user scenario, user question, and dialogue history. Recent studies explored the methods to reduce the information gap between decision-making and question generation and thus improve the performance of generation. However, the information gap still exists because these pipeline structures are still limited in decision-making, span extraction, and question rephrasing three stages. Decision-making and generation are reasoning separately, and the entailment reasoning utilized in decision-making is hard to share through all stages. To tackle the above problem, we proposed a novel one-stage end-to-end framework, called Entailment Fused-T5 (EFT), to bridge the information gap between decision-making and generation in a global understanding manner. The extensive experimental results demonstrate that our proposed framework achieves new state-of-the-art performance on the OR-ShARC benchmark.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译