基于最大元素间间距(IES)约束(MISC)标准,提出了一种新型的稀疏阵列(SA)结构。与传统的MISC阵列相比,所提出的SA配置称为改进的MISC(IMISC),显着提高了均匀的自由度(UDOF)并减少了相互耦合。特别是,IMISC阵列由六个均匀的线性阵列(ULA)组成,可以由IES集确定。IES集受两个参数的约束,即最大IE和传感器数。也得出了IMISC阵列的UDOF,并且也分析了IMISC阵列的重量函数。拟议的IMISC阵列在对现有SAS的UDOF方面具有很大的优势,而它们的相互耦合保持低水平。进行模拟以证明IMISC阵列的优势。
translated by 谷歌翻译
最近证明利用稀疏网络连接深神经网络中的连续层,可为大型最新模型提供好处。但是,网络连接性在浅网络的学习曲线中也起着重要作用,例如经典限制的玻尔兹曼机器(RBM)。一个基本问题是有效地找到了改善学习曲线的连接模式。最近的原则方法明确将网络连接作为参数,这些参数必须在模型中进行优化,但通常依靠连续功能来表示连接和明确的惩罚。这项工作提出了一种基于网络梯度的想法来找到RBM的最佳连接模式的方法:计算每个可能连接的梯度,给定特定的连接模式,并使用梯度驱动连续连接强度参数又使用确定连接模式。因此,学习RBM参数和学习网络连接是真正共同执行的,尽管学习率不同,并且没有改变目标函数。该方法应用于MNIST数据集,以显示针对样本生成和输入分类的基准任务找到更好的RBM模型。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
TMIC是一种应用程序发明家扩展,用于部署ML模型,以在教育环境中使用Google Tochable Machine开发的图像分类。 Google Thotable Machine是一种直观的视觉工具,可为开发用于图像分类的ML模型提供面向工作流的支持。针对使用Google Tochable Machine开发的模型的使用,扩展TMIC可以作为App Inventor的一部分,以tensorflow.js为tensorflow.js导出的受过训练的模型,这是最受欢迎的基于块的编程环境之一,用于教学计算计算K-12。该扩展名是使用基于扩展图片的App Inventor扩展框架创建的,可在BSD 3许可下获得。它可用于在K-12中,在高等教育的入门课程中或有兴趣创建具有图像分类的智能应用程序的任何人。扩展TMIC是由Initiative Computa \ c {C} \ 〜Ao Na Escola的信息学和统计系的圣卡塔纳纳大学/巴西大学提供的研究工作的一部分,旨在在K-中引入AI教育。 12。
translated by 谷歌翻译
在本文中,我们提出了一种一般稳健的子带自适应滤波(GR-SAF)方案,以防止冲动噪声,通过在随机步行模型下以各个重量不确定性最小化均方根偏差。具体而言,通过选择不同的缩放因子,例如在GR-SAF方案中从M-估计和最大correntropy robust标准中选择,我们可以轻松获得不同的GR-SAF算法。重要的是,所提出的GR-SAF算法可以简化为可变的正则化鲁棒归一化的SAF算法,从而具有快速的收敛速率和低稳态误差。在系统识别的背景下,用冲动噪声和回声取消进行双词的模拟已证实,所提出的GR-SAF算法的表现优于其对应物。
translated by 谷歌翻译
当使用基于视觉的方法对被占用和空的空地之间的单个停车位进行分类时,人类专家通常需要注释位置,并标记包含目标停车场中收集的图像的训练集,以微调系统。我们建议研究三种注释类型(多边形,边界框和固定尺寸的正方形),提供停车位的不同数据表示。理由是阐明手工艺注释精度和模型性能之间的最佳权衡。我们还调查了在目标停车场微调预训练型号所需的带注释的停车位数。使用PKLOT数据集使用的实验表明,使用低精度注释(例如固定尺寸的正方形),可以将模型用少于1,000个标记的样品微调到目标停车场。
translated by 谷歌翻译
本文研究了在脉冲干扰和拜占庭式攻击的情况下,对聚类的多任务网络进行了扩散适应。我们根据Geman-McClure估计器使用的成本函数开发了强大的弹性扩散算法(RDLMG)算法,这可以降低对大异常值的敏感性,并使算法在冲动性的干扰下使算法可靠。此外,平均子序列减少的方法,其中每个节点丢弃了从其邻居那里获得的成本贡献的极端价值信息,可以使网络对拜占庭式攻击进行弹性。在这方面,提出的RDLMG算法可确保所有正常节点通过节点之间的合作融合到其理想状态。 RDLMG算法的统计分析也是根据平均和平均形式性能进行的。数值结果评估了用于多目标定位和多任务频谱传感的应用中提出的RDLMG算法。
translated by 谷歌翻译
Delimiting salt inclusions from migrated images is a time-consuming activity that relies on highly human-curated analysis and is subject to interpretation errors or limitations of the methods available. We propose to use migrated images produced from an inaccurate velocity model (with a reasonable approximation of sediment velocity, but without salt inclusions) to predict the correct salt inclusions shape using a Convolutional Neural Network (CNN). Our approach relies on subsurface Common Image Gathers to focus the sediments' reflections around the zero offset and to spread the energy of salt reflections over large offsets. Using synthetic data, we trained a U-Net to use common-offset subsurface images as input channels for the CNN and the correct salt-masks as network output. The network learned to predict the salt inclusions masks with high accuracy; moreover, it also performed well when applied to synthetic benchmark data sets that were not previously introduced. Our training process tuned the U-Net to successfully learn the shape of complex salt bodies from partially focused subsurface offset images.
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译