There is a vast amount of data generated every second due to the rapidly growing technology in the current world. This area of research attempts to determine the feelings or opinions of people on social media posts. The dataset we used was a multi-source dataset from the comment section of various social networking sites like Twitter, Reddit, etc. Natural Language Processing Techniques were employed to perform sentiment analysis on the obtained dataset. In this paper, we provide a comparative analysis using techniques of lexicon-based, machine learning and deep learning approaches. The Machine Learning algorithm used in this work is Naive Bayes, the Lexicon-based approach used in this work is TextBlob, and the deep-learning algorithm used in this work is LSTM.
translated by 谷歌翻译
在现实世界中存在的各种田间条件下,通常会挑战准确的作物行检测。传统的基于颜色的细分无法满足所有此类变化。在农业环境中缺乏全面的数据集限制了研究人员开发强大的分割模型来检测作物行。我们提出了一个用于作物行检测的数据集,其中有11种与甜菜和玉米作物的田间变化。我们还提出了一种新型的作物行检测算法,用于在作物行场中进行视觉伺服。我们的算法可以在不同的田间条件下检测作物行,例如弯曲的作物行,杂草的存在,不连续性,生长阶段,具无金,阴影和光水平。我们的方法仅使用来自沙哑的机器人上正式摄像头的RGB图像来预测作物行。我们的方法表现优于经典的基于颜色的作物行检测基线。在农作物行检测算法的最具挑战性的田间条件下,杂草之间存在茂密的杂草,而作物行中的不连续性是最具挑战性的田间条件。我们的方法可以检测到作物行的末端,并在到达农作物行的末端时将机器人驶向岬角区域。
translated by 谷歌翻译
农业环境中的自主导航通常受到可能在耕地中可能出现的不同田间条件的挑战。在这些农业环境中自动导航的最新解决方案将需要昂贵的硬件,例如RTK-GPS。本文提出了一种强大的作物排检测算法,该算法可以承受这些变化,同时检测作物行进行视觉伺服。创建了一个糖图像的数据集,其中有43个组合在可耕地中发现的11个田间变化。新型的作物行检测算法既经过作物行检测性能,又要测试沿农作系的视觉伺服伺服的能力。该算法仅使用RGB图像作为输入,并且使用卷积神经网络来预测作物行面罩。我们的算法优于基线方法,该方法使用基于颜色的分割来实现场变化的所有组合。我们使用一个组合性能指标,该指标解释了作物行检测的角度和位移误差。我们的算法在作物的早期生长阶段表现出最差的表现。
translated by 谷歌翻译