基于机器学习的决策支持系统的利用率增加强调了导致所有利益相关者准确和公平的预测的必要性。在这项工作中,我们提出了一种新的方法,可以在训练期间提高神经网络模型的公平性。我们介绍了一系列公平性,增强了我们与传统的二进制交叉熵基准损耗一起使用的正规化组件。这些损失函数基于偏置奇偶校验分数(BPS),一个分数有助于使用单个数字量化模型中的偏差。在目前的工作中,我们调查这些正则化组件对偏见的行为和效果。我们在累犯预测任务以及基于人口普查的成人收入数据集的上下文中部署它们。结果表明,对于公平损失功能的良好选择,我们可以减少训练有素的模型的偏置,而不会降低精度,即使在不平衡数据集中也是如此。
translated by 谷歌翻译
本文提出了一种基于内核的自适应过滤器,该过滤器适用于以全双工(FD)模式运行的收发器中的数字域自身解雇取消(SIC)。在FD中,同时传输和接收信号的好处是以强大的自我干扰(SI)的价格出现。在这项工作中,我们主要有兴趣使用自适应滤波器(即自适应滤波器)在函数的再现核Hilbert Space(RKHS)中抑制SI。将投影概念作为功能强大的工具,APSM用于建模并因此删除SI。提供了低复杂性和快速跟踪算法,利用了平行投影以及RKHS中的内核技巧。在实际测量数据上评估所提出的方法的性能。与已知的流行基准相比,该方法说明了所提出的自适应滤波器的良好性能。他们证明,基于内核的算法达到了有利的数字SIC水平,同时借助了使用的自适应滤波方法,在丰富和非线性功能空间内实现基于平行的计算实现。
translated by 谷歌翻译