In light of unprecedented increases in the popularity of the internet and social media, comment moderation has never been a more relevant task. Semi-automated comment moderation systems greatly aid human moderators by either automatically classifying the examples or allowing the moderators to prioritize which comments to consider first. However, the concept of inappropriate content is often subjective, and such content can be conveyed in many subtle and indirect ways. In this work, we propose CoRAL -- a language and culturally aware Croatian Abusive dataset covering phenomena of implicitness and reliance on local and global context. We show experimentally that current models degrade when comments are not explicit and further degrade when language skill and context knowledge are required to interpret the comment.
translated by 谷歌翻译
With the advent of Neural Style Transfer (NST), stylizing an image has become quite popular. A convenient way for extending stylization techniques to videos is by applying them on a per-frame basis. However, such per-frame application usually lacks temporal-consistency expressed by undesirable flickering artifacts. Most of the existing approaches for enforcing temporal-consistency suffers from one or more of the following drawbacks. They (1) are only suitable for a limited range of stylization techniques, (2) can only be applied in an offline fashion requiring the complete video as input, (3) cannot provide consistency for the task of stylization, or (4) do not provide interactive consistency-control. Note that existing consistent video-filtering approaches aim to completely remove flickering artifacts and thus do not respect any specific consistency-control aspect. For stylization tasks, however, consistency-control is an essential requirement where a certain amount of flickering can add to the artistic look and feel. Moreover, making this control interactive is paramount from a usability perspective. To achieve the above requirements, we propose an approach that can stylize video streams while providing interactive consistency-control. Apart from stylization, our approach also supports various other image processing filters. For achieving interactive performance, we develop a lite optical-flow network that operates at 80 Frames per second (FPS) on desktop systems with sufficient accuracy. We show that the final consistent video-output using our flow network is comparable to that being obtained using state-of-the-art optical-flow network. Further, we employ an adaptive combination of local and global consistent features and enable interactive selection between the two. By objective and subjective evaluation, we show that our method is superior to state-of-the-art approaches.
translated by 谷歌翻译
Given a large graph with few node labels, how can we (a) identify the mixed network-effect of the graph and (b) predict the unknown labels accurately and efficiently? This work proposes Network Effect Analysis (NEA) and UltraProp, which are based on two insights: (a) the network-effect (NE) insight: a graph can exhibit not only one of homophily and heterophily, but also both or none in a label-wise manner, and (b) the neighbor-differentiation (ND) insight: neighbors have different degrees of influence on the target node based on the strength of connections. NEA provides a statistical test to check whether a graph exhibits network-effect or not, and surprisingly discovers the absence of NE in many real-world graphs known to have heterophily. UltraProp solves the node classification problem with notable advantages: (a) Accurate, thanks to the network-effect (NE) and neighbor-differentiation (ND) insights; (b) Explainable, precisely estimating the compatibility matrix; (c) Scalable, being linear with the input size and handling graphs with millions of nodes; and (d) Principled, with closed-form formula and theoretical guarantee. Applied on eight real-world graph datasets, UltraProp outperforms top competitors in terms of accuracy and run time, requiring only stock CPU servers. On a large real-world graph with 1.6M nodes and 22.3M edges, UltraProp achieves more than 9 times speedup (12 minutes vs. 2 hours) compared to most competitors.
translated by 谷歌翻译
Machine learning-based segmentation in medical imaging is widely used in clinical applications from diagnostics to radiotherapy treatment planning. Segmented medical images with ground truth are useful for investigating the properties of different segmentation performance metrics to inform metric selection. Regular geometrical shapes are often used to synthesize segmentation errors and illustrate properties of performance metrics, but they lack the complexity of anatomical variations in real images. In this study, we present a tool to emulate segmentations by adjusting the reference (truth) masks of anatomical objects extracted from real medical images. Our tool is designed to modify the defined truth contours and emulate different types of segmentation errors with a set of user-configurable parameters. We defined the ground truth objects from 230 patient images in the Glioma Image Segmentation for Radiotherapy (GLIS-RT) database. For each object, we used our segmentation synthesis tool to synthesize 10 versions of segmentation (i.e., 10 simulated segmentors or algorithms), where each version has a pre-defined combination of segmentation errors. We then applied 20 performance metrics to evaluate all synthetic segmentations. We demonstrated the properties of these metrics, including their ability to capture specific types of segmentation errors. By analyzing the intrinsic properties of these metrics and categorizing the segmentation errors, we are working toward the goal of developing a decision-tree tool for assisting in the selection of segmentation performance metrics.
translated by 谷歌翻译
The previous fine-grained datasets mainly focus on classification and are often captured in a controlled setup, with the camera focusing on the objects. We introduce the first Fine-Grained Vehicle Detection (FGVD) dataset in the wild, captured from a moving camera mounted on a car. It contains 5502 scene images with 210 unique fine-grained labels of multiple vehicle types organized in a three-level hierarchy. While previous classification datasets also include makes for different kinds of cars, the FGVD dataset introduces new class labels for categorizing two-wheelers, autorickshaws, and trucks. The FGVD dataset is challenging as it has vehicles in complex traffic scenarios with intra-class and inter-class variations in types, scale, pose, occlusion, and lighting conditions. The current object detectors like yolov5 and faster RCNN perform poorly on our dataset due to a lack of hierarchical modeling. Along with providing baseline results for existing object detectors on FGVD Dataset, we also present the results of a combination of an existing detector and the recent Hierarchical Residual Network (HRN) classifier for the FGVD task. Finally, we show that FGVD vehicle images are the most challenging to classify among the fine-grained datasets.
translated by 谷歌翻译
Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the United States. These factors have in turn led to increases in the frequency, extent, and severity of wildfires in recent years. Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is an urgency to provide tools for effective wildfire management. Early detection of wildfires is essential to minimizing potentially catastrophic destruction. In this paper, we present our work on integrating multiple data sources in SmokeyNet, a deep learning model using spatio-temporal information to detect smoke from wildland fires. Camera image data is integrated with weather sensor measurements and processed by SmokeyNet to create a multimodal wildland fire smoke detection system. We present our results comparing performance in terms of both accuracy and time-to-detection for multimodal data vs. a single data source. With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.
translated by 谷歌翻译
Information diffusion in Online Social Networks is a new and crucial problem in social network analysis field and requires significant research attention. Efficient diffusion of information are of critical importance in diverse situations such as; pandemic prevention, advertising, marketing etc. Although several mathematical models have been developed till date, but previous works lacked systematic analysis and exploration of the influence of neighborhood for information diffusion. In this paper, we have proposed Common Neighborhood Strategy (CNS) algorithm for information diffusion that demonstrates the role of common neighborhood in information propagation throughout the network. The performance of CNS algorithm is evaluated on several real-world datasets in terms of diffusion speed and diffusion outspread and compared with several widely used information diffusion models. Empirical results show CNS algorithm enables better information diffusion both in terms of diffusion speed and diffusion outspread.
translated by 谷歌翻译
In nonparametric independence testing, we observe i.i.d.\ data $\{(X_i,Y_i)\}_{i=1}^n$, where $X \in \mathcal{X}, Y \in \mathcal{Y}$ lie in any general spaces, and we wish to test the null that $X$ is independent of $Y$. Modern test statistics such as the kernel Hilbert-Schmidt Independence Criterion (HSIC) and Distance Covariance (dCov) have intractable null distributions due to the degeneracy of the underlying U-statistics. Thus, in practice, one often resorts to using permutation testing, which provides a nonasymptotic guarantee at the expense of recalculating the quadratic-time statistics (say) a few hundred times. This paper provides a simple but nontrivial modification of HSIC and dCov (called xHSIC and xdCov, pronounced ``cross'' HSIC/dCov) so that they have a limiting Gaussian distribution under the null, and thus do not require permutations. This requires building on the newly developed theory of cross U-statistics by Kim and Ramdas (2020), and in particular developing several nontrivial extensions of the theory in Shekhar et al. (2022), which developed an analogous permutation-free kernel two-sample test. We show that our new tests, like the originals, are consistent against fixed alternatives, and minimax rate optimal against smooth local alternatives. Numerical simulations demonstrate that compared to the full dCov or HSIC, our variants have the same power up to a $\sqrt 2$ factor, giving practitioners a new option for large problems or data-analysis pipelines where computation, not sample size, could be the bottleneck.
translated by 谷歌翻译
Metric learning aims to learn distances from the data, which enhances the performance of similarity-based algorithms. An author style detection task is a metric learning problem, where learning style features with small intra-class variations and larger inter-class differences is of great importance to achieve better performance. Recently, metric learning based on softmax loss has been used successfully for style detection. While softmax loss can produce separable representations, its discriminative power is relatively poor. In this work, we propose NBC-Softmax, a contrastive loss based clustering technique for softmax loss, which is more intuitive and able to achieve superior performance. Our technique meets the criterion for larger number of samples, thus achieving block contrastiveness, which is proven to outperform pair-wise losses. It uses mini-batch sampling effectively and is scalable. Experiments on 4 darkweb social forums, with NBCSAuthor that uses the proposed NBC-Softmax for author and sybil detection, shows that our negative block contrastive approach constantly outperforms state-of-the-art methods using the same network architecture. Our code is publicly available at : https://github.com/gayanku/NBC-Softmax
translated by 谷歌翻译
The automated synthesis of correct-by-construction Boolean functions from logical specifications is known as the Boolean Functional Synthesis (BFS) problem. BFS has many application areas that range from software engineering to circuit design. In this paper, we introduce a tool BNSynth, that is the first to solve the BFS problem under a given bound on the solution space. Bounding the solution space induces the synthesis of smaller functions that benefit resource constrained areas such as circuit design. BNSynth uses a counter-example guided, neural approach to solve the bounded BFS problem. Initial results show promise in synthesizing smaller solutions; we observe at least \textbf{3.2X} (and up to \textbf{24X}) improvement in the reduction of solution size on average, as compared to state of the art tools on our benchmarks. BNSynth is available on GitHub under an open source license.
translated by 谷歌翻译