自主机器人结合了各种技能,形成越来越复杂的行为,称为任务。尽管这些技能通常以相对较低的抽象级别进行编程,但它们的协调是建筑分离的,并且经常以高级语言或框架表达。几十年来,州机器一直是首选的语言,但是最近,行为树的语言在机器人主义者中引起了人们的关注。行为树最初是为计算机游戏设计的,用于建模自主参与者,提供了基于树木的可扩展的使命表示,并受到支持支持模块化设计和代码的重复使用。但是,尽管使用了该语言的几种实现,但对现实世界中的用法和范围知之甚少。行为树提供的概念与传统语言(例如州机器)有何关系?应用程序中如何使用行为树和状态机概念?我们介绍了对行为树中关键语言概念的研究及其在现实世界机器人应用中的使用。我们识别行为树语言,并将其语义与机器人技术中最著名的行为建模语言进行比较。我们为使用这些语言的机器人应用程序挖掘开源存储库并分析此用法。我们发现两种行为建模语言在语言设计及其在开源项目中的用法之间的相似性方面,以满足机器人域的需求。我们为现实世界行为模型的数据集提供了贡献,希望激发社区使用和进一步开发这种语言,相关的工具和分析技术。
translated by 谷歌翻译
我们的工作针对自动分析,以量化细菌细菌群体的生长动力学。我们提出了一种创新的方法,通过自动化新的,特定的成本功能的自动化最小化对可变形细胞运动的框架跟踪。这种最小化由专用的玻尔兹曼机器(随机复发神经网络)实现。通过连续的两个成本函数的最小化,对细胞分裂的自动检测进行了类似的处理,从而交替地识别儿童对和父母的识别。我们使用(i)记录模拟细胞菌落的记录来验证提出的自动细胞跟踪算法,这些算法与微流体陷阱和(ii)真实数据密切模仿大肠杆菌的生长动力学。在一批1100个模拟图像框架上,每帧的单元格登记精度范围从94.5%到100%,平均水平很高。我们使用大肠杆菌菌落的实验图像序列(即实际数据)进行的初始测试也产生令人信服的结果,注册精度范围从90%到100%。
translated by 谷歌翻译