我们使用多机构系统来建模代理(代表公司)如何合作并适应业务“景观”,其中一些更具影响力的公司有能力塑造其他公司的景观。我们研究的景观是基于著名的Kauffman的NK模型,并增加了“塑造者”,这些公司可以为自己和所有其他玩家改变景观的特征。我们的工作调查了还可以赋予认知和体验式搜索的公司,以及与其他公司建立合作的能力,可以使用这些能力来更快,更熟练地适应。我们发现,在一个合作集团中,公司仍然必须有自己的想法,并抵制更强大的合作伙伴的直接模仿,以共同达到更好的高度。具有更大影响力成员的较大群体和群体通常会做得更好,因此有针对性的智能合作是有益的。这些结论是暂定的,我们的结果表明了对景观坚固性和“锻造性”的敏感性(即,塑造公司将改变景观的能力)。总体而言,我们的工作展示了计算机科学,演变和机器学习在这些复杂环境中为业务策略做出贡献的潜力。
translated by 谷歌翻译
最近已经提出了许多用于对计算上昂贵问题进行多目标优化的方法。通常,每个目标的概率替代物是由初始数据集构建的。然后,替代物可用于在目标空间中为任何解决方案产生预测密度。使用预测密度,我们可以根据解决方案来计算预期的超量改进(EHVI)。使EHVI最大化,我们可以找到接下来可能会缴纳的最有希望的解决方案。有用于计算EHVI的封闭式表达式,并在多元预测密度上整合。但是,它们需要分区目标空间,对于三个以上的目标而言,这可能会非常昂贵。此外,对于预测密度依赖的问题,没有封闭形式的表达式,可以捕获目标之间的相关性。在这种情况下,使用蒙特卡洛近似值,这并不便宜。因此,仍然需要开发新的准确但便宜的近似方法。在这里,我们研究了使用高斯 - 温石正交近似EHVI的替代方法。我们表明,对于独立和相关的预测密度,对于一系列流行的测试问题,它可以是蒙特卡洛的准确替代品。
translated by 谷歌翻译
生成的对抗网络(GANS)正在增加对综合数据的手段的关注。到目前为止,这项工作已被应用于在数据机密域之外的用例,具有共同的应用程序作为人工图像的生产。在这里,我们考虑了GAN的潜在应用,以产生合成人口普查Microdata。我们使用电池电量和披露风险指标(目标正确的归因概率),以比较用使用正统数据合成方法生产的表格GAN产生的数据。
translated by 谷歌翻译
聚类算法的全面基准是困难的两个关键因素:(i)〜这种无监督的学习方法的独特数学定义和(ii)〜某些聚类算法采用的生成模型或群集标准之间的依赖性的依赖性内部集群验证。因此,对严格基准测试的最佳做法没有达成共识,以及是否有可能在给定申请的背景之外。在这里,我们认为合成数据集必须继续在群集算法的评估中发挥重要作用,但这需要构建适当地涵盖影响聚类算法性能的各种属性集的基准。通过我们的框架,我们展示了重要的角色进化算法,以支持灵活的这种基准,允许简单的修改和扩展。我们说明了我们框架的两种可能用途:(i)〜基准数据的演变与一组手派生属性和(ii)〜生成梳理给定对算法之间的性能差异的数据集。我们的作品对设计集群基准的设计具有足够挑战广泛算法的集群基准,并进一步了解特定方法的优势和弱点。
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译
Rigorous guarantees about the performance of predictive algorithms are necessary in order to ensure their responsible use. Previous work has largely focused on bounding the expected loss of a predictor, but this is not sufficient in many risk-sensitive applications where the distribution of errors is important. In this work, we propose a flexible framework to produce a family of bounds on quantiles of the loss distribution incurred by a predictor. Our method takes advantage of the order statistics of the observed loss values rather than relying on the sample mean alone. We show that a quantile is an informative way of quantifying predictive performance, and that our framework applies to a variety of quantile-based metrics, each targeting important subsets of the data distribution. We analyze the theoretical properties of our proposed method and demonstrate its ability to rigorously control loss quantiles on several real-world datasets.
translated by 谷歌翻译
The broad usage of mobile devices nowadays, the sensitiveness of the information contained in them, and the shortcomings of current mobile user authentication methods are calling for novel, secure, and unobtrusive solutions to verify the users' identity. In this article, we propose TypeFormer, a novel Transformer architecture to model free-text keystroke dynamics performed on mobile devices for the purpose of user authentication. The proposed model consists in Temporal and Channel Modules enclosing two Long Short-Term Memory (LSTM) recurrent layers, Gaussian Range Encoding (GRE), a multi-head Self-Attention mechanism, and a Block-Recurrent structure. Experimenting on one of the largest public databases to date, the Aalto mobile keystroke database, TypeFormer outperforms current state-of-the-art systems achieving Equal Error Rate (EER) values of 3.25% using only 5 enrolment sessions of 50 keystrokes each. In such way, we contribute to reducing the traditional performance gap of the challenging mobile free-text scenario with respect to its desktop and fixed-text counterparts. Additionally, we analyse the behaviour of the model with different experimental configurations such as the length of the keystroke sequences and the amount of enrolment sessions, showing margin for improvement with more enrolment data. Finally, a cross-database evaluation is carried out, demonstrating the robustness of the features extracted by TypeFormer in comparison with existing approaches.
translated by 谷歌翻译
Analogical proportions compare pairs of items (a, b) and (c, d) in terms of their differences and similarities. They play a key role in the formalization of analogical inference. The paper first discusses how to improve analogical inference in terms of accuracy and in terms of computational cost. Then it indicates the potential of analogical proportions for explanation. Finally, it highlights the close relationship between analogical proportions and multi-valued dependencies, which reveals an unsuspected aspect of the former.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
Task-oriented dialogue systems often assist users with personal or confidential matters. For this reason, the developers of such a system are generally prohibited from observing actual usage. So how can they know where the system is failing and needs more training data or new functionality? In this work, we study ways in which realistic user utterances can be generated synthetically, to help increase the linguistic and functional coverage of the system, without compromising the privacy of actual users. To this end, we propose a two-stage Differentially Private (DP) generation method which first generates latent semantic parses, and then generates utterances based on the parses. Our proposed approach improves MAUVE by 3.8$\times$ and parse tree node-type overlap by 1.4$\times$ relative to current approaches for private synthetic data generation, improving both on fluency and semantic coverage. We further validate our approach on a realistic domain adaptation task of adding new functionality from private user data to a semantic parser, and show gains of 1.3$\times$ on its accuracy with the new feature.
translated by 谷歌翻译