建模超声斑点对其表征组织特性的能力引起了极大的兴趣。由于斑点取决于潜在的组织结构,因此对其进行建模可能有助于分割或疾病检测等任务。但是,对于通常用于研究功能障碍的移植肾脏,目前尚不清楚哪个统计分布最能表征这种斑点。对于移植肾脏的区域而言,尤其如此:皮质,髓质和中央回声复合物。此外,目前尚不清楚这些分布如何因患者变量(例如年龄,性别,体重指数,原发性疾病或供体类型)而有所不同。这些特征可能会影响斑点建模,鉴于它们对肾脏解剖结构的影响。我们是第一个调查这两个目标的人。 n = 821肾移植受者B模式图像自动使用神经网络自动分段到皮质,髓质和中央回声复合物中。每个区域都安装了七个不同的概率分布。雷利和中族分布的模型参数在这三个区域之间有显着差异(p <= 0.05)。虽然两者都具有极好的合身性,但中田族具有更高的Kullbeck-Leibler Divergence。受体年龄与皮质中的尺度弱相关(Omega:Rho = 0.11,p = 0.004),而体重指数与髓质中的形状微弱相关(M:RHO = 0.08,p = 0.04)。性别,原发性疾病和供体类型均未表现出任何相关性。我们提出,根据我们的发现,中纳卡米分布可用于表征区域性的移植肾脏和大多数患者特征。
translated by 谷歌翻译
Neural compression offers a domain-agnostic approach to creating codecs for lossy or lossless compression via deep generative models. For sequence compression, however, most deep sequence models have costs that scale with the sequence length rather than the sequence complexity. In this work, we instead treat data sequences as observations from an underlying continuous-time process and learn how to efficiently discretize while retaining information about the full sequence. As a consequence of decoupling sequential information from its temporal discretization, our approach allows for greater compression rates and smaller computational complexity. Moreover, the continuous-time approach naturally allows us to decode at different time intervals. We empirically verify our approach on multiple domains involving compression of video and motion capture sequences, showing that our approaches can automatically achieve reductions in bit rates by learning how to discretize.
translated by 谷歌翻译
We investigate the parameterization of deep neural networks that by design satisfy the continuity equation, a fundamental conservation law. This is enabled by the observation that any solution of the continuity equation can be represented as a divergence-free vector field. We hence propose building divergence-free neural networks through the concept of differential forms, and with the aid of automatic differentiation, realize two practical constructions. As a result, we can parameterize pairs of densities and vector fields that always exactly satisfy the continuity equation, foregoing the need for extra penalty methods or expensive numerical simulation. Furthermore, we prove these models are universal and so can be used to represent any divergence-free vector field. Finally, we experimentally validate our approaches by computing neural network-based solutions to fluid equations, solving for the Hodge decomposition, and learning dynamical optimal transport maps.
translated by 谷歌翻译
有许多用于深层生成建模的框架,每个框架通常都有自己的特定培训算法和推理方法。我们提供了有关现有深层生成模型与GFLOWNET框架之间的连接的简短说明,阐明了它们的重叠特征,并通过Markovian轨迹通过学习镜头来提供统一的观点。这为统一培训和推理算法提供了一种手段,并提供了构建生成模型团聚的途径。
translated by 谷歌翻译
由于其物理能力,模拟的类人动物是一个吸引人的研究领域。尽管如此,他们也在控制方面具有挑战性,因为政策必须推动不稳定,不连续和高维物理系统。一种经过广泛研究的方法是利用运动捕获(MOCAP)数据来教授类人动物的低水平技能(例如,站立,步行和跑步),然后可以重新使用以综合高级行为。但是,即使使用MOCAP数据,控制模拟的类人动物仍然非常困难,因为MOCAP数据仅提供运动学信息。寻找物理控制输入以实现所示动作需要计算密集型方法,例如增强学习。因此,尽管有公开可用的MOCAP数据,但其效用仍限于具有大规模计算的机构。在这项工作中,我们通过训练和释放高质量的代理,可以大大降低有关该主题的生产研究的障碍,这些代理可以在基于DM_Control物理学的环境中跟踪三个小时的MOCAP数据以上的MOCAP数据。我们释放Mocapact(动作动作捕获),这些专家代理的数据集及其推出,其中包含本体感受观察和动作。我们通过使用它来训练单个层次结构策略来证明MOCAPACT的实用性,该策略能够跟踪DM_Control中的整个MOCAP数据集并显示学习学到的低级组件可以被重新使用以有效地学习下游高级任务。最后,我们使用MoCapact训练自动回旋GPT模型,并表明它可以控制模拟的类人动物以在运动提示下执行自然运动完成。结果和指向代码和数据集的链接的视频可在https://microsoft.github.io/mocapact上获得。
translated by 谷歌翻译
我们提出了Theseus,这是一个有效的应用程序不合时宜的开源库,用于在Pytorch上构建的可区分非线性最小二乘(DNL)优化,为机器人技术和视觉中的端到端结构化学习提供了一个共同的框架。现有的DNLS实施是特定应用程序的,并且并不总是纳入许多对效率重要的成分。 Theseus是应用程序不可静止的,正如我们使用的几个示例应用程序所用的,这些应用程序是使用相同的基础可区分组件构建的,例如二阶优化器,标准成本功能和Lie组。为了提高效率,TheseUS纳入了对稀疏求解器,自动矢量化,批处理,GPU加速度和梯度计算的支持,并具有隐式分化和直接损耗最小化。我们在一组应用程序中进行了广泛的性能评估,显示出这些功能时显示出明显的效率提高和更好的可扩展性。项目页面:https://sites.google.com/view/theseus-ai
translated by 谷歌翻译
连续归一化流(CNF)是一类生成模型,可以通过求解普通的微分方程(ODE)将先验分布转换为模型分布。我们建议通过最大程度地减少概率路径差异(PPD)来训练CNF,这是CNF产生的概率密度路径与目标概率密度路径之间的新型差异家族。 PPD是使用对数质量保护公式制定的,该公式是线性的一阶部分微分方程,将对数目标概率和CNF的定义向量场进行配方。 PPD比现有方法具有多个关键好处:它避免了在迭代中解决颂歌的需求,很容易应用于歧管数据,比例到高维度,并与大型目标路径兼容,该目标路径在有限的时间内插值纯噪声和数据。从理论上讲,PPD显示为结合经典概率差异。从经验上讲,我们表明,通过最小化PPD实现最新的CNF在现有的低维歧管基准上获得了最新的可能性和样品质量,并且是生成模型以扩展到中度高维歧管的第一个示例。
translated by 谷歌翻译
离散和连续分布之间的映射是一项艰巨的任务,许多人不得不诉诸启发方法。我们提出了一种基于镶嵌的方法,该方法直接学习连续空间中的量化边界,并具有精确的可能性评估。这是通过使用具有有效的对数决定性jacobian的简单同态形态来构建凸多属凸的归一化流程来完成的。我们在两个应用程序设置中探索了这种方法,从离散到连续的映射,反之亦然。首先,Voronoi的消除化允许在多维空间中自动学习量化边界。边界的位置和区域之间的距离可以编码量化离散值之间的有用的结构关系。其次,无论混合组件的数量如何,Voronoi混合模型都具有恒定的计算成本,可用于可能性评估。从经验上讲,我们显示了对一系列结构化数据模式的现有方法的改进。
translated by 谷歌翻译
Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. 1
translated by 谷歌翻译
We show that standard ResNet architectures can be made invertible, allowing the same model to be used for classification, density estimation, and generation. Typically, enforcing invertibility requires partitioning dimensions or restricting network architectures. In contrast, our approach only requires adding a simple normalization step during training, already available in standard frameworks. Invertible ResNets define a generative model which can be trained by maximum likelihood on unlabeled data. To compute likelihoods, we introduce a tractable approximation to the Jacobian log-determinant of a residual block. Our empirical evaluation shows that invertible ResNets perform competitively with both stateof-the-art image classifiers and flow-based generative models, something that has not been previously achieved with a single architecture.
translated by 谷歌翻译