已经开发了许多本体论,即描述逻辑(DL)知识库,以提供有关各个领域的丰富知识,并且其中许多基于ALC,即原型和表达的DL或其扩展。探索ALC本体论的主要任务是计算语义范围。符号方法可以保证声音和完整的语义需要,但对不一致和缺失信息敏感。为此,我们提出了一个模糊的ALC本体神经推理器Falcon。 Falcon使用模糊逻辑运算符为任意ALC本体论生成单个模型结构,并使用多个模型结构来计算语义索引。理论结果表明,保证猎鹰是计算ALC本体学语义索引的声音和完整算法。实验结果表明,Falcon不仅可以近似推理(不完整的本体理由)和chanseansissist的推理(因本体不一致的推理),还可以通过结合ALC本体的背景知识来改善生物医学领域的机器学习。
translated by 谷歌翻译
已经开发了许多本体论,即描述逻辑(DL)知识库,以提供有关各个领域的丰富知识。本体论由一个ABOX,即两个实体之间或一个概念与实体之间的断言公理组成,以及Tbox,即两个概念之间的术语公理。神经逻辑推理(NLR)是探索此类知识库的基本任务,该任务旨在根据查询和答案的分布式表示,以逻辑操作来回答多跳的查询。尽管以前的NLR方法可以给出特定的实体级答案,即ABOX答案,但它们无法提供描述性概念级答案,即Tbox答案,其中每个概念都是对一组实体的描述。换句话说,以前的NLR方法在忽略Tbox时唯一的原因是本体论的Abox。特别是,提供Tbox答案可以通过描述性概念来推断每个查询的解释,这使用户可以理解答案,并且在应用本体论领域具有极大的有用性。在这项工作中,我们提出了整个Tbox和Abox(TA-NLR)的神经逻辑推理的问题,该问题解决了需要解决在概念上纳入,代表和操作时需要解决的挑战。我们提出了一种原始解决方案,名为Ta-nlr的TAR。首先,我们合并了基于本体论公理的描述以提供概念的来源。然后,我们将概念和查询表示为模糊集,即其元素具有成员程度的集合,以与实体桥接概念和查询。此外,我们设计了涉及概念的概念的概念和查询以进行优化和推理的概念的设计操作员。两个现实世界数据集的广泛实验结果证明了TAR对TA-NLR的有效性。
translated by 谷歌翻译
大多数真实的知识图(kg)远非完整和全面。这个问题激发了预测最合理的缺失事实以完成给定的kg,即知识图完成(KGC)。但是,现有的kgc方法遇到了两个主要问题,1)虚假负面问题,即,采样的负面培训实例可能包括潜在的真实事实; 2)数据稀疏问题,即真实事实仅解释了所有可能事实的一小部分。为此,我们提出了针对KGC的对抗数据增强(PUDA)的积极未标记的学习。特别是,PUDA针对KGC任务量身定制了正标记的风险估计器,以解决虚假的负面问题。此外,为了解决数据稀疏问题,PUDA通过在积极的无标记的Minimax游戏中统一对抗性培训和积极的未标记学习来实现数据增强策略。现实世界基准数据集的广泛实验结果证明了我们提出的方法的有效性和兼容性。
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
Nine language-vision AI models trained on web scrapes with the Contrastive Language-Image Pretraining (CLIP) objective are evaluated for evidence of a bias studied by psychologists: the sexual objectification of girls and women, which occurs when a person's human characteristics are disregarded and the person is treated as a body or a collection of body parts. A first experiment uses standardized images of women from the Sexual OBjectification and EMotion Database, and finds that, commensurate with prior research in psychology, human characteristics are disassociated from images of objectified women: the model's recognition of emotional state is mediated by whether the subject is fully or partially clothed. Embedding association tests (EATs) return significant effect sizes for both anger (d >.8) and sadness (d >.5). A second experiment measures the effect in a representative application: an automatic image captioner (Antarctic Captions) includes words denoting emotion less than 50% as often for images of partially clothed women than for images of fully clothed women. A third experiment finds that images of female professionals (scientists, doctors, executives) are likely to be associated with sexual descriptions relative to images of male professionals. A fourth experiment shows that a prompt of "a [age] year old girl" generates sexualized images (as determined by an NSFW classifier) up to 73% of the time for VQGAN-CLIP (age 17), and up to 40% of the time for Stable Diffusion (ages 14 and 18); the corresponding rate for boys never surpasses 9%. The evidence indicates that language-vision AI models trained on automatically collected web scrapes learn biases of sexual objectification, which propagate to downstream applications.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
We apply the vision transformer, a deep machine learning model build around the attention mechanism, on mel-spectrogram representations of raw audio recordings. When adding mel-based data augmentation techniques and sample-weighting, we achieve comparable performance on both (PRS and CCS challenge) tasks of ComParE21, outperforming most single model baselines. We further introduce overlapping vertical patching and evaluate the influence of parameter configurations. Index Terms: audio classification, attention, mel-spectrogram, unbalanced data-sets, computational paralinguistics
translated by 谷歌翻译
Common to all different kinds of recurrent neural networks (RNNs) is the intention to model relations between data points through time. When there is no immediate relationship between subsequent data points (like when the data points are generated at random, e.g.), we show that RNNs are still able to remember a few data points back into the sequence by memorizing them by heart using standard backpropagation. However, we also show that for classical RNNs, LSTM and GRU networks the distance of data points between recurrent calls that can be reproduced this way is highly limited (compared to even a loose connection between data points) and subject to various constraints imposed by the type and size of the RNN in question. This implies the existence of a hard limit (way below the information-theoretic one) for the distance between related data points within which RNNs are still able to recognize said relation.
translated by 谷歌翻译
The proliferation of automatic faithfulness metrics for summarization has produced a need for benchmarks to evaluate them. While existing benchmarks measure the correlation with human judgements of faithfulness on model-generated summaries, they are insufficient for diagnosing whether metrics are: 1) consistent, i.e., decrease as errors are introduced into a summary, 2) effective on human-written texts, and 3) sensitive to different error types (as summaries can contain multiple errors). To address these needs, we present a benchmark of unfaithful minimal pairs (BUMP), a dataset of 889 human-written, minimally different summary pairs, where a single error (from an ontology of 7 types) is introduced to a summary from the CNN/DailyMail dataset to produce an unfaithful summary. We find BUMP complements existing benchmarks in a number of ways: 1) the summaries in BUMP are harder to discriminate and less probable under SOTA summarization models, 2) BUMP enables measuring the consistency of metrics, and reveals that the most discriminative metrics tend not to be the most consistent, 3) BUMP enables the measurement of metrics' performance on individual error types and highlights areas of weakness for future work.
translated by 谷歌翻译
Earthquakes, fire, and floods often cause structural collapses of buildings. The inspection of damaged buildings poses a high risk for emergency forces or is even impossible, though. We present three recent selected missions of the Robotics Task Force of the German Rescue Robotics Center, where both ground and aerial robots were used to explore destroyed buildings. We describe and reflect the missions as well as the lessons learned that have resulted from them. In order to make robots from research laboratories fit for real operations, realistic test environments were set up for outdoor and indoor use and tested in regular exercises by researchers and emergency forces. Based on this experience, the robots and their control software were significantly improved. Furthermore, top teams of researchers and first responders were formed, each with realistic assessments of the operational and practical suitability of robotic systems.
translated by 谷歌翻译