该技术报告描述了在Robocup SPL(Mario)中计算视觉统计的模块化且可扩展的体系结构,该结构在Robocup 2022的SPL Open Research Challenge期间提出,该挑战在曼谷(泰国)举行。马里奥(Mario)是一个开源的,可用的软件应用程序,其最终目标是为Robocup SPL社区的发展做出贡献。Mario带有一个GUI,该GUI集成了多个机器学习和基于计算机视觉的功能,包括自动摄像机校准,背景减法,同型计算,玩家 +球跟踪和本地化,NAO机器人姿势估计和跌落检测。马里奥(Mario)被排名第一。1在开放研究挑战中。
translated by 谷歌翻译
Aiming at highly accurate object detection for connected and automated vehicles (CAVs), this paper presents a Deep Neural Network based 3D object detection model that leverages a three-stage feature extractor by developing a novel LIDAR-Camera fusion scheme. The proposed feature extractor extracts high-level features from two input sensory modalities and recovers the important features discarded during the convolutional process. The novel fusion scheme effectively fuses features across sensory modalities and convolutional layers to find the best representative global features. The fused features are shared by a two-stage network: the region proposal network (RPN) and the detection head (DH). The RPN generates high-recall proposals, and the DH produces final detection results. The experimental results show the proposed model outperforms more recent research on the KITTI 2D and 3D detection benchmark, particularly for distant and highly occluded instances.
translated by 谷歌翻译
我们研究保形预测的鲁棒性,这是标记噪声的不确定性定量的强大工具。我们的分析解决了回归和分类问题,表征了何时以及如何构建正确覆盖未观察到的无噪音地面真相标签的不确定性集。通过风格化的理论示例和实际实验,我们认为天真的保形预测涵盖了无噪声的地面真相标签,除非噪声分布是对手设计的。这使我们相信,除了病理数据分布或噪声源外,对标签噪声的纠正是不必要的。在这种情况下,我们还可以在保形预测算法中校正有界大小的噪声,以确保在没有得分或数据规律性的情况下正确覆盖地面真相标签。
translated by 谷歌翻译
我们研究在线学习问题,决策者必须采取一系列决策,但要受到$ M $长期约束。决策者的目标是最大程度地提高其总奖励,同时达到小累积约束,在$ t $回合中违规。我们介绍了此一般类问题的第一个最佳世界类型算法,在根据未知随机模型选择奖励和约束的情况下,无需保证,在它们的情况下,在他们的情况下选择了奖励和约束。在每个回合中由对手选择。我们的算法是关于满足长期约束的最佳固定策略的第一个在对抗环境中提供保证的算法。特别是,它保证了$ \ rho/(1+ \ rho)$的最佳奖励和额定性遗憾,其中$ \ rho $是与严格可行的解决方案有关的可行性参数。我们的框架采用传统的遗憾最小化器作为黑盒组件。因此,通过使用适当的遗憾最小化器进行实例化,它可以处理全反馈以及强盗反馈设置。此外,它允许决策者通过非凸奖励和约束无缝处理场景。我们展示了如何在重复拍卖的预算管理机制的背景下应用我们的框架,以保证不包装的长期约束(例如,ROI约束)。
translated by 谷歌翻译
任何稀疏编码方法的最终目标是从几个嘈杂的线性测量值(一个未知的稀疏向量)中准确恢复。不幸的是,这个估计问题通常是NP-HARD,因此始终采用近似方法(例如Lasso或正交匹配的追踪)来接近它,从而使准确性以较小的计算复杂性进行了交易。在本文中,我们为稀疏编码开发了一种量子启发的算法,前提是,与经典近似方法相比,量子计算机和ISING机器的出现可能会导致更准确的估计。为此,我们将最一般的稀疏编码问题作为二次不受约束的二进制优化(QUBO)任务提出,可以使用量子技术有效地最小化。为了在旋转数量(空间复杂性)方面也有效地得出QUBO模型,我们将分析分为三种不同的情况。这些由表达基础稀疏向量所需的位数来定义:二进制,2位和一般的定点表示。我们使用有关Lightsolver量子启发的数字平台的模拟数据进行数值实验,以验证我们的QUBO公式的正确性,并证明其优于基线方法的优势。
translated by 谷歌翻译
了解复杂分子过程的动力学通常与长期稳定状态之间不经常过渡的研究有关。进行此类罕见事件采样的标准方法是使用轨迹空间中的随机步行生成过渡路径的集合。然而,这伴随着随后访问的路径之间的较强相关性和在平行采样过程中的内在难度之间存在很强的相关性。我们建议基于神经网络生成的配置的过渡路径采样方案。这些是采用归一化流量获得的,即能够从给定分布中生成非相关样品的神经网络类。使用这种方法,不仅删除了访问的路径之间的相关性,而且采样过程很容易平行。此外,通过调节归一化流,可以将配置的采样转向感兴趣的区域。我们表明,这允许解决过渡区域的热力学和动力学。
translated by 谷歌翻译
计算机视觉中有意义的不确定性量化需要有关语义信息的推理 - 例如,照片中的人的头发颜色或街上汽车的位置。为此,最近在生成建模方面的突破使我们能够在分离的潜在空间中代表语义信息,但是在语义潜在变量上提供不确定性仍然具有挑战性。在这项工作中,我们提供了原则上的不确定性间隔,这些间隔可保证为任何潜在的生成模型包含真正的语义因素。该方法执行以下操作:(1)它使用分位数回归来输出潜在空间中每个元素的启发式不确定性间隔(2)校准了这些不确定性,以使它们包含新的,看不见的输入的潜在值。然后可以通过发电机传播这些校准间隔的终点,以为每个语义因素产生可解释的不确定性可视化。该技术可靠地传达了语义上有意义的,有原则和实例自适应的不确定性,例如图像超分辨率和图像完成。
translated by 谷歌翻译
机器学习模型,尤其是人工神经网络,越来越多地用于为在各个领域的高风险场景中(从金融服务,公共安全和医疗保健服务)提供信息。尽管神经网络在许多情况下都取得了出色的性能,但它们的复杂性质引起了人们对现实情况下的可靠性,可信赖性和公平性的关注。结果,已经提出了几种A-tostori解释方法来突出影响模型预测的特征。值得注意的是,Shapley的价值 - 一种满足几种理想特性的游戏理论数量 - 在机器学习解释性文献中获得了知名度。然而,更传统上,在统计学习中的特征是通过有条件独立性正式化的,而对其进行测试的标准方法是通过有条件的随机测试(CRT)。到目前为止,有关解释性和特征重要性的这两个观点已被认为是独特的和独立的。在这项工作中,我们表明基于沙普利的解释方法和针对特征重要性的有条件独立性测试密切相关。更确切地说,我们证明,通过类似于CRT的程序实现了一组特定的条件独立性测试,评估了Shapley系数量,以执行特定的条件独立性测试,但用于不同的零假设。此外,获得的游戏理论值上限限制了此类测试的$ p $值。结果,我们授予大型Shapley系数具有精确的统计意义,并具有控制I型错误。
translated by 谷歌翻译
Model-X条件随机测试是有条件独立性测试的通用框架,解锁了新的可能性,以发现与感兴趣的响应有条件相关的特征,同时控制I型错误率。该测试的一个吸引力的优势是,它可以与任何机器学习模型一起使用来设计强大的测试统计数据。反过来,Model-X文献中的常见实践是使用机器学习模型形成测试统计量,经过培训,以最大程度地提高预测精度,希望能够获得良好的功率测试。但是,这里的理想目标是推动模型(在训练期间)以最大程度地提高测试功能,而不仅仅是预测精度。在本文中,我们通过首次引入新型模型拟合方案来弥合这一差距,这些方案旨在明确提高Model-X测试的功能。这是通过引入新的成本函数来完成的,该功能旨在最大化用于衡量有条件独立性违反的测试统计量。使用合成和真实的数据集,我们证明了我们提出的损失函数与各种基本预测模型(Lasso,弹性网和深神经网络)的组合始终增加所获得的正确发现的数量,同时维持I型错误率下的I型错误率控制。
translated by 谷歌翻译
自动驾驶汽车使用各种传感器和机器学习型号来预测周围道路使用者的行为。文献中的大多数机器学习模型都集中在定量误差指标上,例如均方根误差(RMSE),以学习和报告其模型的功能。对定量误差指标的关注倾向于忽略模型的更重要的行为方面,从而提出了这些模型是否真正预测类似人类行为的问题。因此,我们建议分析机器学习模型的输出,就像我们将在常规行为研究中分析人类数据一样。我们介绍定量指标,以证明在自然主义高速公路驾驶数据集中存在三种不同的行为现象:1)运动学依赖性谁通过合并点首次通过合并点2)巷道上的车道更改,可容纳坡道车辆3 )车辆通过高速公路上的车辆变化,以避免铅车冲突。然后,我们使用相同的指标分析了三个机器学习模型的行为。即使模型的RMSE值有所不同,所有模型都捕获了运动学依赖性的合并行为,但在不同程度上挣扎着捕获更细微的典型礼貌车道变更和高速公路车道的变化行为。此外,车道变化期间的碰撞厌恶分析表明,模型努力捕获人类驾驶的物理方面:在车辆之间留下足够的差距。因此,我们的分析强调了简单的定量指标不足,并且在分析人类驾驶预测的机器学习模型时需要更广泛的行为观点。
translated by 谷歌翻译