我们提出Plingo,这是具有各种概率推理模式的ASP系统clingo的扩展。Plingo以Lp^mln为中心,Lp^mln是基于Markov Logic的权重方案的ASP的概率扩展。这种选择是由于可以将核心概率推理模式映射到优化问题的事实而动机,并且LP^mln可以用作与其他概率方法相关的中间地形式主义。结果,Plingo为Lp^mln,P-Log和Problog提供了三个替代前端。相应的输入语言和推理模式是通过Clingo的多拍和理论解决功能来实现的。pling脚的核心等于在现代ASP技术方面重新实现LP^mln,并以一种基于新方法以最佳顺序进行答案集枚举的近似技术扩展。我们通过将Plingo的性能与其他概率系统进行比较,从经验上评估。
translated by 谷歌翻译
我们在答案集编程(ASP)中,提供了全面的可变实例化或接地的理论基础。在ASP的建模语言的语义上构建,我们在(固定点)运营商方面介绍了接地算法的正式表征。专用良好的运营商扮演了一个主要作用,其相关模型提供了划定接地结果以及随机简化的语义指导。我们地址呈现出一种竞技级逻辑程序,该程序包含递归聚合,从而达到现有ASP建模语言的范围。这伴随着一个普通算法框架,详细说明递归聚集体的接地。给定的算法基本上对应于ASP接地器Gringo中使用的算法。
translated by 谷歌翻译
回答集编程(ASP)已成为一种流行的和相当复杂的声明问题解决方法。这是由于其具有吸引力的地址解决方案的工作流程,这是可以轻松解决问题解决的方法,即使对于计算机科学外的守护者而言。与此不同,底层技术的高度复杂性使得ASP专家越来越难以将想法付诸实践。有关解决此问题,本教程旨在使用户能够构建自己的基于ASP的系统。更确切地说,我们展示了ASP系统Clingo如何用于扩展ASP和实现定制的专用系统。为此,我们提出了两个替代方案。我们从传统的AI技术开始,并展示元编程如何用于扩展ASP。这是一种相当轻的方法,依赖于Clingo的reation特征来使用ASP本身表达新功能。与此不同,本教程的主要部分使用传统的编程(在Python中)来通过其应用程序编程接口操纵Clingo。这种方法允许改变和控制ASP的整个模型 - 地面解决工作流程。 COMENT of Clingo的新应用程序课程使我们能够通过自定义类似于Clingo中的进程来绘制Clingo的基础架构。例如,我们可能会互动到程序的抽象语法树,控制各种形式的多射击求解,并为外国推论设置理论传播者。另一种横截面结构,跨越元以及应用程序编程是Clingo的中间格式,即指定底层接地器和求解器之间的界面。我们通过示例和几个非琐碎的案例研究说明了本教程的前述概念和技术。
translated by 谷歌翻译
Biometrics are one of the most privacy-sensitive data. Ubiquitous authentication systems with a focus on privacy favor decentralized approaches as they reduce potential attack vectors, both on a technical and organizational level. The gold standard is to let the user be in control of where their own data is stored, which consequently leads to a high variety of devices used. Moreover, in comparison with a centralized system, designs with higher end-user freedom often incur additional network overhead. Therefore, when using face recognition for biometric authentication, an efficient way to compare faces is important in practical deployments, because it reduces both network and hardware requirements that are essential to encourage device diversity. This paper proposes an efficient way to aggregate embeddings used for face recognition based on an extensive analysis on different datasets and the use of different aggregation strategies. As part of this analysis, a new dataset has been collected, which is available for research purposes. Our proposed method supports the construction of massively scalable, decentralized face recognition systems with a focus on both privacy and long-term usability.
translated by 谷歌翻译
Model counting is a fundamental problem which has been influential in many applications, from artificial intelligence to formal verification. Due to the intrinsic hardness of model counting, approximate techniques have been developed to solve real-world instances of model counting. This paper designs a new anytime approach called PartialKC for approximate model counting. The idea is a form of partial knowledge compilation to provide an unbiased estimate of the model count which can converge to the exact count. Our empirical analysis demonstrates that PartialKC achieves significant scalability and accuracy over prior state-of-the-art approximate counters, including satss and STS. Interestingly, the empirical results show that PartialKC reaches convergence for many instances and therefore provides exact model counting performance comparable to state-of-the-art exact counters.
translated by 谷歌翻译
The Me 163 was a Second World War fighter airplane and a result of the German air force secret developments. One of these airplanes is currently owned and displayed in the historic aircraft exhibition of the Deutsches Museum in Munich, Germany. To gain insights with respect to its history, design and state of preservation, a complete CT scan was obtained using an industrial XXL-computer tomography scanner. Using the CT data from the Me 163, all its details can visually be examined at various levels, ranging from the complete hull down to single sprockets and rivets. However, while a trained human observer can identify and interpret the volumetric data with all its parts and connections, a virtual dissection of the airplane and all its different parts would be quite desirable. Nevertheless, this means, that an instance segmentation of all components and objects of interest into disjoint entities from the CT data is necessary. As of currently, no adequate computer-assisted tools for automated or semi-automated segmentation of such XXL-airplane data are available, in a first step, an interactive data annotation and object labeling process has been established. So far, seven 512 x 512 x 512 voxel sub-volumes from the Me 163 airplane have been annotated and labeled, whose results can potentially be used for various new applications in the field of digital heritage, non-destructive testing, or machine-learning. This work describes the data acquisition process of the airplane using an industrial XXL-CT scanner, outlines the interactive segmentation and labeling scheme to annotate sub-volumes of the airplane's CT data, describes and discusses various challenges with respect to interpreting and handling the annotated and labeled data.
translated by 谷歌翻译
Micro aerial vehicles (MAVs) hold the potential for performing autonomous and contactless land surveys for the detection of landmines and explosive remnants of war (ERW). Metal detectors are the standard tool, but have to be operated close to and parallel to the terrain. As this requires advanced flight capabilities, they have not been successfully combined with MAVs before. To this end, we present a full system to autonomously survey challenging undulated terrain using a metal detector mounted on a 5 degrees of freedom (DOF) MAV. Based on an online estimate of the terrain, our receding-horizon planner efficiently covers the area, aligning the detector to the surface while considering the kinematic and visibility constraints of the platform. For resilient localization, we propose a factor-graph approach for online fusion of GNSS, IMU and LiDAR measurements. A simulated ablation study shows that the proposed planner reduces coverage duration and improves trajectory smoothness. Real-world flight experiments showcase autonomous mapping of buried metallic objects in undulated and obstructed terrain. The proposed localization approach is resilient to individual sensor degeneracy.
translated by 谷歌翻译
Everting, soft growing vine robots benefit from reduced friction with their environment, which allows them to navigate challenging terrain. Vine robots can use air pouches attached to their sides for lateral steering. However, when all pouches are serially connected, the whole robot can only perform one constant curvature in free space. It must contact the environment to navigate through obstacles along paths with multiple turns. This work presents a multi-segment vine robot that can navigate complex paths without interacting with its environment. This is achieved by a new steering method that selectively actuates each single pouch at the tip, providing high degrees of freedom with few control inputs. A small magnetic valve connects each pouch to a pressure supply line. A motorized tip mount uses an interlocking mechanism and motorized rollers on the outer material of the vine robot. As each valve passes through the tip mount, a permanent magnet inside the tip mount opens the valve so the corresponding pouch is connected to the pressure supply line at the same moment. Novel cylindrical pneumatic artificial muscles (cPAMs) are integrated into the vine robot and inflate to a cylindrical shape for improved bending characteristics compared to other state-of-the art vine robots. The motorized tip mount controls a continuous eversion speed and enables controlled retraction. A final prototype was able to repeatably grow into different shapes and hold these shapes. We predict the path using a model that assumes a piecewise constant curvature along the outside of the multi-segment vine robot. The proposed multi-segment steering method can be extended to other soft continuum robot designs.
translated by 谷歌翻译
Integration of multiple sensor modalities and deep learning into Simultaneous Localization And Mapping (SLAM) systems are areas of significant interest in current research. Multi-modality is a stepping stone towards achieving robustness in challenging environments and interoperability of heterogeneous multi-robot systems with varying sensor setups. With maplab 2.0, we provide a versatile open-source platform that facilitates developing, testing, and integrating new modules and features into a fully-fledged SLAM system. Through extensive experiments, we show that maplab 2.0's accuracy is comparable to the state-of-the-art on the HILTI 2021 benchmark. Additionally, we showcase the flexibility of our system with three use cases: i) large-scale (approx. 10 km) multi-robot multi-session (23 missions) mapping, ii) integration of non-visual landmarks, and iii) incorporating a semantic object-based loop closure module into the mapping framework. The code is available open-source at https://github.com/ethz-asl/maplab.
translated by 谷歌翻译
A central problem in computational biophysics is protein structure prediction, i.e., finding the optimal folding of a given amino acid sequence. This problem has been studied in a classical abstract model, the HP model, where the protein is modeled as a sequence of H (hydrophobic) and P (polar) amino acids on a lattice. The objective is to find conformations maximizing H-H contacts. It is known that even in this reduced setting, the problem is intractable (NP-hard). In this work, we apply deep reinforcement learning (DRL) to the two-dimensional HP model. We can obtain the conformations of best known energies for benchmark HP sequences with lengths from 20 to 50. Our DRL is based on a deep Q-network (DQN). We find that a DQN based on long short-term memory (LSTM) architecture greatly enhances the RL learning ability and significantly improves the search process. DRL can sample the state space efficiently, without the need of manual heuristics. Experimentally we show that it can find multiple distinct best-known solutions per trial. This study demonstrates the effectiveness of deep reinforcement learning in the HP model for protein folding.
translated by 谷歌翻译