有效的有丝分裂定位是决定肿瘤预后和成绩的关键先驱任务。由于固有的域偏见,通过深度学习的图像分析通过深度学习图像分析的自动化检测通常会失败。本文提出了一个用于有丝分裂检测的域均质器,该域均质器试图通过输入图像的对抗重建来减轻组织学图像的领域差异。拟议的均质器基于U-NET架构,可以有效地减少组织学成像数据常见的域差异。我们通过观察预处理图像之间的域差异来证明我们的域均质器的有效性。使用此均匀剂,以及随后的视网膜网络检测器,我们能够以检测到的有丝分裂数字的平均精度来超越2021 MIDOG挑战的基准。
translated by 谷歌翻译
近年来,由于深度学习体系结构的有希望的进步,面部识别系统取得了非凡的成功。但是,当将配置图像与额叶图像的画廊匹配时,它们仍然无法实现预期的准确性。当前方法要么执行姿势归一化(即额叶化)或脱离姿势信息以进行面部识别。相反,我们提出了一种新方法,通过注意机制将姿势用作辅助信息。在本文中,我们假设使用注意机制姿势参加的信息可以指导剖面面上的上下文和独特的特征提取,从而进一步使嵌入式域中的更好表示形式学习。为了实现这一目标,首先,我们设计了一个统一的耦合曲线到额定面部识别网络。它通过特定于类的对比损失来学习从面孔到紧凑的嵌入子空间的映射。其次,我们开发了一个新颖的姿势注意力块(PAB),以专门指导从剖面面上提取姿势 - 不合稳定的特征。更具体地说,PAB旨在显式地帮助网络沿着频道和空间维度沿着频道和空间维度的重要特征,同时学习嵌入式子空间中的歧视性但构成不变的特征。为了验证我们提出的方法的有效性,我们对包括多PIE,CFP,IJBC在内的受控和野生基准进行实验,并在艺术状态下表现出优势。
translated by 谷歌翻译
在本文中,我们试图在抽象嵌入空间中绘制额叶和轮廓面图像之间的连接。我们使用耦合编码器网络利用此连接将额叶/配置文件的面部图像投影到一个常见的潜在嵌入空间中。提出的模型通过最大化面部两种视图之间的相互信息来迫使嵌入空间中表示的相似性。拟议的耦合编码器从三个贡献中受益于与极端姿势差异的匹配面。首先,我们利用我们的姿势意识到的对比学习来最大程度地提高身份额叶和概况表示之间的相互信息。其次,由在过去的迭代中积累的潜在表示组成的内存缓冲区已集成到模型中,因此它可以比小批量大小相对较多的实例。第三,一种新颖的姿势感知的对抗结构域适应方法迫使模型学习从轮廓到额叶表示的不对称映射。在我们的框架中,耦合编码器学会了扩大真实面孔和冒名顶替面部分布之间的边距,这导致了相同身份的不同观点之间的高度相互信息。通过对四个基准数据集的广泛实验,评估和消融研究来研究拟议模型的有效性,并与引人入胜的最新算法进行比较。
translated by 谷歌翻译
For augmentation of the square-shaped image data of a convolutional neural network (CNN), we introduce a new method, in which the original images are mapped onto a disk with a conformal mapping, rotated around the center of this disk and mapped under such a M\"obius transformation that preserves the disk, and then mapped back onto their original square shape. This process does not result the loss of information caused by removing areas from near the edges of the original images unlike the typical transformations used in the data augmentation for a CNN. We offer here the formulas of all the mappings needed together with detailed instructions how to write a code for transforming the images. The new method is also tested with simulated data and, according the results, using this method to augment the training data of 10 images into 40 images decreases the amount of the error in the predictions by a CNN for a test set of 160 images in a statistically significant way (p-value=0.0360).
translated by 谷歌翻译
Any organization needs to improve their products, services, and processes. In this context, engaging with customers and understanding their journey is essential. Organizations have leveraged various techniques and technologies to support customer engagement, from call centres to chatbots and virtual agents. Recently, these systems have used Machine Learning (ML) and Natural Language Processing (NLP) to analyze large volumes of customer feedback and engagement data. The goal is to understand customers in context and provide meaningful answers across various channels. Despite multiple advances in Conversational Artificial Intelligence (AI) and Recommender Systems (RS), it is still challenging to understand the intent behind customer questions during the customer journey. To address this challenge, in this paper, we study and analyze the recent work in Conversational Recommender Systems (CRS) in general and, more specifically, in chatbot-based CRS. We introduce a pipeline to contextualize the input utterances in conversations. We then take the next step towards leveraging reverse feature engineering to link the contextualized input and learning model to support intent recognition. Since performance evaluation is achieved based on different ML models, we use transformer base models to evaluate the proposed approach using a labelled dialogue dataset (MSDialogue) of question-answering interactions between information seekers and answer providers.
translated by 谷歌翻译
A large number of empirical studies on applying self-attention models in the domain of recommender systems are based on offline evaluation and metrics computed on standardized datasets, without insights on how these models perform in real life scenarios. Moreover, many of them do not consider information such as item and customer metadata, although deep-learning recommenders live up to their full potential only when numerous features of heterogeneous types are included. Also, typically recommendation models are designed to serve well only a single use case, which increases modeling complexity and maintenance costs, and may lead to inconsistent customer experience. In this work, we present a reusable Attention-based Fashion Recommendation Algorithm (AFRA), that utilizes various interaction types with different fashion entities such as items (e.g., shirt), outfits and influencers, and their heterogeneous features. Moreover, we leverage temporal and contextual information to address both short and long-term customer preferences. We show its effectiveness on outfit recommendation use cases, in particular: 1) personalized ranked feed; 2) outfit recommendations by style; 3) similar item recommendation and 4) in-session recommendations inspired by most recent customer actions. We present both offline and online experimental results demonstrating substantial improvements in customer retention and engagement.
translated by 谷歌翻译
Over the past years, fashion-related challenges have gained a lot of attention in the research community. Outfit generation and recommendation, i.e., the composition of a set of items of different types (e.g., tops, bottom, shoes, accessories) that go well together, are among the most challenging ones. That is because items have to be both compatible amongst each other and also personalized to match the taste of the customer. Recently there has been a plethora of work targeted at tackling these problems by adopting various techniques and algorithms from the machine learning literature. However, to date, there is no extensive comparison of the performance of the different algorithms for outfit generation and recommendation. In this paper, we close this gap by providing a broad evaluation and comparison of various algorithms, including both personalized and non-personalized approaches, using online, real-world user data from one of Europe's largest fashion stores. We present the adaptations we made to some of those models to make them suitable for personalized outfit generation. Moreover, we provide insights for models that have not yet been evaluated on this task, specifically, GPT, BERT and Seq-to-Seq LSTM.
translated by 谷歌翻译
与其2D图像对应物相比,3D点云数据上的零射击学习是一个相关的未置换问题。 3D数据由于不可用的预训练特征提取模型而带来了ZSL的新挑战。为了解决这个问题,我们提出了一种及时引导的3D场景生成和监督方法,该方法可以增强3D数据以更好地学习网络,从而探索可见和看不见的对象的复杂相互作用。首先,我们以提示描述的某些方式合并了两个3D模型的点云。提示的行为就像描述每个3D场景的注释一样。后来,我们进行对比学习,以端到端的方式培训我们所提出的建筑。我们认为,与单​​个对象相比,3D场景可以更有效地关联对象,因为当对象出现在上下文中时,流行的语言模型(如Bert)可以实现高性能。我们提出的及时引导场景生成方法封装了数据扩展和基于及时的注释/字幕,以提高3D ZSL性能。我们已经在合成(ModelNet40,ModelNet10)和实扫描(ScanoJbectnn)3D对象数据集上实现了最新的ZSL和广义ZSL性能。
translated by 谷歌翻译
智能仪表测量值虽然对于准确的需求预测至关重要,但仍面临一些缺点,包括消费者的隐私,数据泄露问题,仅举几例。最近的文献探索了联合学习(FL)作为一种有前途的隐私机器学习替代方案,该替代方案可以协作学习模型,而无需将私人原始数据暴露于短期负载预测中。尽管有着美德,但标准FL仍然容易受到棘手的网络威胁,称为拜占庭式攻击,这是由错误和/或恶意客户进行的。因此,为了提高联邦联邦短期负载预测对拜占庭威胁的鲁棒性,我们开发了一个最先进的基于私人安全的FL框架,以确保单个智能电表的数据的隐私,同时保护FL的安全性模型和架构。我们提出的框架利用了通过符号随机梯度下降(SignsGD)算法的梯度量化的想法,在本地模型培训后,客户仅将梯度的“符号”传输到控制中心。当我们通过涉及一组拜占庭攻击模型的基准神经网络的实验突出显示时,我们提出的方法会非常有效地减轻此类威胁,从而优于常规的FED-SGD模型。
translated by 谷歌翻译
音频是人类交流最常用的方式之一,但与此同时,它很容易被欺骗人们滥用。随着AI的革命,几乎每个人都可以访问相关技术,从而使罪犯犯罪和伪造变得简单。在这项工作中,我们引入了一种深度学习方法,以开发一种分类器,该分类器将盲目地将输入音频分类为真实或模仿。提出的模型接受了从大型音频数据集提取的一组重要功能的培训,以获取分类器,该分类器已在不同音频的相同功能上进行了测试。为这项工作创建了两个数据集;所有英语数据集和混合数据集(阿拉伯语和英语)。这些数据集已通过GitHub提供,可在https://github.com/sass7/dataset上使用研究社区。为了进行比较,还通过人类检查对音频进行了分类,主题是母语人士。随之而来的结果很有趣,并且表现出强大的精度。
translated by 谷歌翻译