拉力请求是当今协作软件开发和代码审核过程的关键部分。但是,当审阅者或作者不积极参与拉动请求时,拉动请求也可以减慢软件开发过程。在这项工作中,我们设计了一项端到端服务,以提醒作者或审阅者与他们的逾期拉动请求互动,以加速逾期拉动请求。首先,我们根据努力估算和机器学习使用模型来预测给定拉的请求的完成时间。其次,我们使用活动检测来滤除可能逾期的拉请请求,但仍在采取足够的动作。最后,我们使用演员身份证来了解拉动请求的阻止者是谁,并推动适当的演员(作者或审稿人)。轻推的主要新颖性是它成功地减少了拉动请求解决时间,同时确保开发人员认为发送的通知在成千上万的存储库中是有用的。在Microsoft使用的147个存储库的随机试验中,Nudge能够将拉的请求分辨率时间减少60%,而与Nudge未发送通知的逾期拉动请求相比,该请求的8,500次拉。此外,收到推动通知的开发人员将这些通知的73%置于正面。我们观察到在Microsoft的8,000个存储库中扩展Nudge的部署时,我们观察到了类似的结果,在整整一年中,Nudge发送了210,000个通知。这表明了Nudge可以扩展到数千个存储库的能力。最后,我们对选择通知的定性分析指示了未来研究的领域,例如在拉动请求和开发人员的可用性中考虑依赖性。
translated by 谷歌翻译
彩票票证假设(LTH)指出,对于合理尺寸的神经网络,同一网络中的子网络的性能不如接受相同初始化训练时的密集对应。这项工作调查了模型大小与查找这些稀疏子网络的易用性之间的关系。我们通过实验表明,令人惊讶的是,在有限的预算下,较小的型号从票务搜索(TS)中受益更多。
translated by 谷歌翻译
变压器已经看到了自然语言处理和计算机视觉任务的前所未有的上升。但是,在音频任务中,由于音频波形的极大序列长度或在培训基于傅立叶特征时,它们是不可行的。在这项工作中,我们介绍了一个架构,Audiomer,在那里我们将1D残差网络与表演者的注意力结合起来,以实现使用原始音频波形的关键字在关键字中实现最先进的性能,优先于以前的所有方法,同时计算更便宜和参数效率。此外,我们的模型具有语音处理的实际优点,例如由于缺乏位置编码而在任意长的音频剪辑上推断。代码可在https://github.com/the-learning-machines/dautiomer获得
translated by 谷歌翻译
基于会话的推荐系统通过使用短期匿名会话建模用户行为和偏好来建立对用户的相关项目。现有方法利用图形神经网络(GNNS)传播和聚合来自邻居节点的信息I.E.,本地消息传递。这种基于图形的架构具有代表性限制,因为单个子图易于过度填写顺序依赖,而不是考虑不同会话中的项目之间的复杂转换。我们提出了一种新的技术,使变压器与目标关节GNN结合使用。这允许学习更丰富的表示,与Vanilla目标注意GNN相比,这转化为经验性能提升。我们的实验结果和消融表明,我们的建议方法与现有的现实世界基准数据集的现有方法具有竞争力,从而改善了基于图形的假设。代码在https://github.com/the-learning-machines/sbr
translated by 谷歌翻译
Recent advances in neural radiance fields have enabled the high-fidelity 3D reconstruction of complex scenes for novel view synthesis. However, it remains underexplored how the appearance of such representations can be efficiently edited while maintaining photorealism. In this work, we present PaletteNeRF, a novel method for photorealistic appearance editing of neural radiance fields (NeRF) based on 3D color decomposition. Our method decomposes the appearance of each 3D point into a linear combination of palette-based bases (i.e., 3D segmentations defined by a group of NeRF-type functions) that are shared across the scene. While our palette-based bases are view-independent, we also predict a view-dependent function to capture the color residual (e.g., specular shading). During training, we jointly optimize the basis functions and the color palettes, and we also introduce novel regularizers to encourage the spatial coherence of the decomposition. Our method allows users to efficiently edit the appearance of the 3D scene by modifying the color palettes. We also extend our framework with compressed semantic features for semantic-aware appearance editing. We demonstrate that our technique is superior to baseline methods both quantitatively and qualitatively for appearance editing of complex real-world scenes.
translated by 谷歌翻译
The rapid growth of machine translation (MT) systems has necessitated comprehensive studies to meta-evaluate evaluation metrics being used, which enables a better selection of metrics that best reflect MT quality. Unfortunately, most of the research focuses on high-resource languages, mainly English, the observations for which may not always apply to other languages. Indian languages, having over a billion speakers, are linguistically different from English, and to date, there has not been a systematic study of evaluating MT systems from English into Indian languages. In this paper, we fill this gap by creating an MQM dataset consisting of 7000 fine-grained annotations, spanning 5 Indian languages and 7 MT systems, and use it to establish correlations between annotator scores and scores obtained using existing automatic metrics. Our results show that pre-trained metrics, such as COMET, have the highest correlations with annotator scores. Additionally, we find that the metrics do not adequately capture fluency-based errors in Indian languages, and there is a need to develop metrics focused on Indian languages. We hope that our dataset and analysis will help promote further research in this area.
translated by 谷歌翻译
Flooding is one of the most disastrous natural hazards, responsible for substantial economic losses. A predictive model for flood-induced financial damages is useful for many applications such as climate change adaptation planning and insurance underwriting. This research assesses the predictive capability of regressors constructed on the National Flood Insurance Program (NFIP) dataset using neural networks (Conditional Generative Adversarial Networks), decision trees (Extreme Gradient Boosting), and kernel-based regressors (Gaussian Process). The assessment highlights the most informative predictors for regression. The distribution for claims amount inference is modeled with a Burr distribution permitting the introduction of a bias correction scheme and increasing the regressor's predictive capability. Aiming to study the interaction with physical variables, we incorporate Daymet rainfall estimation to NFIP as an additional predictor. A study on the coastal counties in the eight US South-West states resulted in an $R^2=0.807$. Further analysis of 11 counties with a significant number of claims in the NFIP dataset reveals that Extreme Gradient Boosting provides the best results, that bias correction significantly improves the similarity with the reference distribution, and that the rainfall predictor strengthens the regressor performance.
translated by 谷歌翻译
Recent advancements in sensing and communication facilitate obtaining high-frequency real-time data from various physical systems like power networks, climate systems, biological networks, etc. However, since the data are recorded by physical sensors, it is natural that the obtained data is corrupted by measurement noise. In this paper, we present a novel algorithm for online real-time learning of dynamical systems from noisy time-series data, which employs the Robust Koopman operator framework to mitigate the effect of measurement noise. The proposed algorithm has three main advantages: a) it allows for online real-time monitoring of a dynamical system; b) it obtains a linear representation of the underlying dynamical system, thus enabling the user to use linear systems theory for analysis and control of the system; c) it is computationally fast and less intensive than the popular Extended Dynamic Mode Decomposition (EDMD) algorithm. We illustrate the efficiency of the proposed algorithm by applying it to identify the Van der Pol oscillator, the IEEE 68 bus system, and a ring network of Van der Pol oscillators.
translated by 谷歌翻译
Knowledge about outcomes is critical for complex event understanding but is hard to acquire. We show that by pre-identifying a participant in a complex event, crowd workers are able to (1) infer the collective impact of salient events that make up the situation, (2) annotate the volitional engagement of participants in causing the situation, and (3) ground the outcome of the situation in state changes of the participants. By creating a multi-step interface and a careful quality control strategy, we collect a high quality annotated dataset of 8K short newswire narratives and ROCStories with high inter-annotator agreement (0.74-0.96 weighted Fleiss Kappa). Our dataset, POQue (Participant Outcome Questions), enables the exploration and development of models that address multiple aspects of semantic understanding. Experimentally, we show that current language models lag behind human performance in subtle ways through our task formulations that target abstract and specific comprehension of a complex event, its outcome, and a participant's influence over the event culmination.
translated by 谷歌翻译
Modeling the risk of extreme weather events in a changing climate is essential for developing effective adaptation and mitigation strategies. Although the available low-resolution climate models capture different scenarios, accurate risk assessment for mitigation and adaption often demands detail that they typically cannot resolve. Here, we develop a dynamic data-driven downscaling (super-resolution) method that incorporates physics and statistics in a generative framework to learn the fine-scale spatial details of rainfall. Our method transforms coarse-resolution ($0.25^{\circ} \times 0.25^{\circ}$) climate model outputs into high-resolution ($0.01^{\circ} \times 0.01^{\circ}$) rainfall fields while efficaciously quantifying uncertainty. Results indicate that the downscaled rainfall fields closely match observed spatial fields and their risk distributions.
translated by 谷歌翻译