Increasingly taking place in online spaces, modern political conversations are typically perceived to be unproductively affirming -- siloed in so called ``echo chambers'' of exclusively like-minded discussants. Yet, to date we lack sufficient means to measure viewpoint diversity in conversations. To this end, in this paper, we operationalize two viewpoint metrics proposed for recommender systems and adapt them to the context of social media conversations. This is the first study to apply these two metrics (Representation and Fragmentation) to real world data and to consider the implications for online conversations specifically. We apply these measures to two topics -- daylight savings time (DST), which serves as a control, and the more politically polarized topic of immigration. We find that the diversity scores for both Fragmentation and Representation are lower for immigration than for DST. Further, we find that while pro-immigrant views receive consistent pushback on the platform, anti-immigrant views largely operate within echo chambers. We observe less severe yet similar patterns for DST. Taken together, Representation and Fragmentation paint a meaningful and important new picture of viewpoint diversity.
translated by 谷歌翻译
Remote sensing imagery provides comprehensive views of the Earth, where different sensors collect complementary data at different spatial scales. Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a $5.0\%$ non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a $0.9$ mIoU to $3.8$ mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
translated by 谷歌翻译
Anomaly detection on time series data is increasingly common across various industrial domains that monitor metrics in order to prevent potential accidents and economic losses. However, a scarcity of labeled data and ambiguous definitions of anomalies can complicate these efforts. Recent unsupervised machine learning methods have made remarkable progress in tackling this problem using either single-timestamp predictions or time series reconstructions. While traditionally considered separately, these methods are not mutually exclusive and can offer complementary perspectives on anomaly detection. This paper first highlights the successes and limitations of prediction-based and reconstruction-based methods with visualized time series signals and anomaly scores. We then propose AER (Auto-encoder with Regression), a joint model that combines a vanilla auto-encoder and an LSTM regressor to incorporate the successes and address the limitations of each method. Our model can produce bi-directional predictions while simultaneously reconstructing the original time series by optimizing a joint objective function. Furthermore, we propose several ways of combining the prediction and reconstruction errors through a series of ablation studies. Finally, we compare the performance of the AER architecture against two prediction-based methods and three reconstruction-based methods on 12 well-known univariate time series datasets from NASA, Yahoo, Numenta, and UCR. The results show that AER has the highest averaged F1 score across all datasets (a 23.5% improvement compared to ARIMA) while retaining a runtime similar to its vanilla auto-encoder and regressor components. Our model is available in Orion, an open-source benchmarking tool for time series anomaly detection.
translated by 谷歌翻译
We present an update on the current architecture of the Zoea knowledge-based, Composable Inductive Programming system. The Zoea compiler is built using a modern variant of the black-board architecture. Zoea integrates a large number of knowledge sources that encode different aspects of programming language and software development expertise. We describe the use of synthetic test cases as a ubiquitous form of knowledge and hypothesis representation that sup-ports a variety of reasoning strategies. Some future plans are also outlined.
translated by 谷歌翻译
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant down-scaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with 3 orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.
translated by 谷歌翻译
Datasets for training recommender systems are often subject to distribution shift induced by users' and recommenders' selection biases. In this paper, we study the impact of selection bias on datasets with different quantization. We then leverage two differently quantized datasets from different source distributions to mitigate distribution shift by applying the inverse probability scoring method from causal inference. Empirically, our approach gains significant performance improvement over single-dataset methods and alternative ways of combining two datasets.
translated by 谷歌翻译
There has been great recent advancement in human-computer chat. However, proper evaluation currently requires human judgements that produce notoriously high-variance metrics due to their inherent subjectivity. Furthermore, there is little standardization in the methods and labels used for evaluation, with an overall lack of work to compare and assess the validity of various evaluation approaches. As a consequence, existing evaluation results likely leave an incomplete picture of the strengths and weaknesses of open-domain chatbots. We aim towards a dimensional evaluation of human-computer chat that can reliably measure several distinct aspects of chat quality. To this end, we present our novel human evaluation method that quantifies the rate of several quality-related chatbot behaviors. Our results demonstrate our method to be more suitable for dimensional chat evaluation than alternative likert-style or comparative methods. We then use our validated method and existing methods to evaluate four open-domain chat models from the recent literature.
translated by 谷歌翻译
Text-guided image editing can have a transformative impact in supporting creative applications. A key challenge is to generate edits that are faithful to input text prompts, while consistent with input images. We present Imagen Editor, a cascaded diffusion model built, by fine-tuning Imagen on text-guided image inpainting. Imagen Editor's edits are faithful to the text prompts, which is accomplished by using object detectors to propose inpainting masks during training. In addition, Imagen Editor captures fine details in the input image by conditioning the cascaded pipeline on the original high resolution image. To improve qualitative and quantitative evaluation, we introduce EditBench, a systematic benchmark for text-guided image inpainting. EditBench evaluates inpainting edits on natural and generated images exploring objects, attributes, and scenes. Through extensive human evaluation on EditBench, we find that object-masking during training leads to across-the-board improvements in text-image alignment -- such that Imagen Editor is preferred over DALL-E 2 and Stable Diffusion -- and, as a cohort, these models are better at object-rendering than text-rendering, and handle material/color/size attributes better than count/shape attributes.
translated by 谷歌翻译
We test grip strength and shock absorption properties of various granular material in granular jamming robotic components. The granular material comprises a range of natural, manufactured, and 3D printed material encompassing a wide range of shapes, sizes, and Shore hardness. Two main experiments are considered, both representing compelling use cases for granular jamming in soft robotics. The first experiment measures grip strength (retention force measured in Newtons) when we fill a latex balloon with the chosen grain type and use it as a granular jamming gripper to pick up a range of test objects. The second experiment measures shock absorption properties recorded by an Inertial Measurement Unit which is suspended in an envelope of granular material and dropped from a set height. Our results highlight a range of shape, size and softness effects, including that grain deformability is a key determinant of grip strength, and interestingly, that larger grain sizes in 3D printed grains create better shock absorbing materials.
translated by 谷歌翻译
Fruit harvesting has recently experienced a shift towards soft grippers that possess compliance, adaptability, and delicacy. In this context, pneumatic grippers are popular, due to provision of high deformability and compliance, however they typically possess limited grip strength. Jamming possesses strong grip capability, however has limited deformability and often requires the object to be pushed onto a surface to attain a grip. This paper describes a hybrid gripper combining pneumatics (for deformation) and jamming (for grip strength). Our gripper utilises a torus (donut) structure with two chambers controlled by pneumatic and vacuum pressure respectively, to conform around a target object. The gripper displays good adaptability, exploiting pneumatics to mould to the shape of the target object where jamming can be successfully harnessed to grip. The main contribution of the paper is design, fabrication, and characterisation of the first hybrid gripper that can use granular jamming in free space, achieving significantly larger retention forces compared to pure pneumatics. We test our gripper on a range of different sizes and shapes, as well as picking a broad range of real fruit.
translated by 谷歌翻译