Applications such as employees sharing office spaces over a workweek can be modeled as problems where agents are matched to resources over multiple rounds. Agents' requirements limit the set of compatible resources and the rounds in which they want to be matched. Viewing such an application as a multi-round matching problem on a bipartite compatibility graph between agents and resources, we show that a solution (i.e., a set of matchings, with one matching per round) can be found efficiently if one exists. To cope with situations where a solution does not exist, we consider two extensions. In the first extension, a benefit function is defined for each agent and the objective is to find a multi-round matching to maximize the total benefit. For a general class of benefit functions satisfying certain properties (including diminishing returns), we show that this multi-round matching problem is efficiently solvable. This class includes utilitarian and Rawlsian welfare functions. For another benefit function, we show that the maximization problem is NP-hard. In the second extension, the objective is to generate advice to each agent (i.e., a subset of requirements to be relaxed) subject to a budget constraint so that the agent can be matched. We show that this budget-constrained advice generation problem is NP-hard. For this problem, we develop an integer linear programming formulation as well as a heuristic based on local search. We experimentally evaluate our algorithms on synthetic networks and apply them to two real-world situations: shared office spaces and matching courses to classrooms.
translated by 谷歌翻译
将人类运营商和虚拟代理(机器人)相结合到有效的混合系统中的前景是为客户提供适当的客户服务的前景,这是有希望而又具有挑战性的。当机器人无法提供适当的服务并在他们喜欢与人类运营商互动时,混合系统会减少客户的挫败感。此外,我们表明,可以通过使虚拟代理能够向人类操作员逐步学习来降低建立和维护此类虚拟代理的成本和努力。我们采用排队理论来确定控制此类混合系统行为和效率的关键参数,并确定应优化应进行优化以改善服务的主要参数。我们正式证明并在广泛的模拟和用户研究中证明,有了适当的选择,这种混合系统能够增加服务客户的数量,同时减少他们的预期等待时间和增加满意度。
translated by 谷歌翻译
许多情况下,具有限制代理商竞争资源的代理商可以作为两分图上的最大匹配问题施放。我们的重点是资源分配问题,在这些问题上,代理可能会限制与某些资源不兼容的限制。我们假设一个原理可以随机选择最大匹配,以便每个代理都具有一定概率的资源。代理商希望通过在一定范围内修改限制来提高他们的匹配机会。原则的目标是建议一个不满意的代理商放松其限制,以便放松的总成本在预算范围内(代理商选择),并最大程度地提高了分配资源的可能性。我们为这种预算受限的最大化问题的某些变体建立硬度结果,并为其他变体提供算法结果。我们通过实验评估合成数据集以及两个新颖的现实数据集:度假活动数据集和一个教室数据集的方法。
translated by 谷歌翻译
Using robots in educational contexts has already shown to be beneficial for a student's learning and social behaviour. For levitating them to the next level of providing more effective and human-like tutoring, the ability to adapt to the user and to express proactivity is fundamental. By acting proactively, intelligent robotic tutors anticipate possible situations where problems for the student may arise and act in advance for preventing negative outcomes. Still, the decisions of when and how to behave proactively are open questions. Therefore, this paper deals with the investigation of how the student's cognitive-affective states can be used by a robotic tutor for triggering proactive tutoring dialogue. In doing so, it is aimed to improve the learning experience. For this reason, a concept learning task scenario was observed where a robotic assistant proactively helped when negative user states were detected. In a learning task, the user's states of frustration and confusion were deemed to have negative effects on the outcome of the task and were used to trigger proactive behaviour. In an empirical user study with 40 undergraduate and doctoral students, we studied whether the initiation of proactive behaviour after the detection of signs of confusion and frustration improves the student's concentration and trust in the agent. Additionally, we investigated which level of proactive dialogue is useful for promoting the student's concentration and trust. The results show that high proactive behaviour harms trust, especially when triggered during negative cognitive-affective states but contributes to keeping the student focused on the task when triggered in these states. Based on our study results, we further discuss future steps for improving the proactive assistance of robotic tutoring systems.
translated by 谷歌翻译
For conceptual design, engineers rely on conventional iterative (often manual) techniques. Emerging parametric models facilitate design space exploration based on quantifiable performance metrics, yet remain time-consuming and computationally expensive. Pure optimisation methods, however, ignore qualitative aspects (e.g. aesthetics or construction methods). This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE), which serves as forward performance predictor for given design features as well as an inverse design feature predictor conditioned on a set of performance requests. The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland. Sensitivity analysis is employed for explainability and informing designers about (i) relations of the model between features and/or performances and (ii) structural improvements under user-defined objectives. A case study proved our framework's potential to serve as a future co-pilot for conceptual design studies of pedestrian bridges and beyond.
translated by 谷歌翻译
The demonstrated success of transfer learning has popularized approaches that involve pretraining models from massive data sources and subsequent finetuning towards a specific task. While such approaches have become the norm in fields such as natural language processing, implementation and evaluation of transfer learning approaches for chemistry are in the early stages. In this work, we demonstrate finetuning for downstream tasks on a graph neural network (GNN) trained over a molecular database containing 2.7 million water clusters. The use of Graphcore IPUs as an AI accelerator for training molecular GNNs reduces training time from a reported 2.7 days on 0.5M clusters to 1.2 hours on 2.7M clusters. Finetuning the pretrained model for downstream tasks of molecular dynamics and transfer to a different potential energy surface took only 8.3 hours and 28 minutes, respectively, on a single GPU.
translated by 谷歌翻译
在本文中,我们介绍了一个专家注册的数据集,用于检测上市公司提出的现实环境主张。我们训练和发布基线模型,用于使用此新数据集检测环境主张。我们进一步预测了数据集的潜在应用:我们使用微调模型来检测2012年至2020年之间每季度收入电话的回答部分中提出的环境主张 - 我们发现自从巴黎协议中的《巴黎协定》中的环境要求稳步增加2015。
translated by 谷歌翻译
我们通过使用KRAUS操作员学习过程表示,对离散和连续变量量子系统执行量子过程断层扫描(QPT)。克劳斯形式确保重建过程是完全积极的。为了使过程保持痕量保护,我们在优化期间在所谓的stiefel歧管上使用约束的梯度散发(GD)方法,以获得Kraus oberators。我们的Ansatz使用一些KRAUS操作员来避免直接估计大型过程矩阵,例如Choi矩阵,用于低级别量子过程。 GD-QPT匹配压缩 - 感应(CS)和投影最小二乘(PLS)QPT的基准测试中的性能,并具有两Q量的随机过程,但是通过结合这两种方法的最佳功能来发光。与CS相似(但与PLS不同),GD-QPT可以从少量随机测量中重建一个过程,并且类似于PLS(但与CS不同),它也适用于更大的系统尺寸,最多可达至少五个Qubits。我们设想,GD-QPT的数据驱动方法可以成为一种实用工具,可大大降低中等规模量子系统中QPT的成本和计算工作。
translated by 谷歌翻译
近年来,大型预训练的深神经网络(DNN)彻底改变了计算机视野(CV)的领域。虽然这些DNN已被证明非常适合一般图像识别任务,但行业的应用通常被排除为三个原因:1)大型预先训练的DNN是建立在数百万个参数上的,在许多设备上进行部署,2)用于预培训的底层数据集由一般物体组成,而工业案例通常由非常特定的物体组成,例如太阳晶片的结构,3)可能偏见预先接受的DNN,提高了公司的法律问题。作为一个补救措施,我们研究了我们从头开始训练的简历的神经网络。为此目的,我们使用来自太阳能晶圆制造商的真实案例。我们发现我们的神经网络实现了与预先训练的DNN相似的表演,即使它们包括较少的参数并且不依赖于第三方数据集。
translated by 谷歌翻译
近年来,大型的语言模型(LM)彻底改变了自然语言处理(NLP)的领域。但是,虽然对通用语言进行了预测,但已证明对通用语言非常有效,但已经观察到利基语言会带来问题。特别是,与气候相关的文本包括常见LM无法准确表示的特定语言。我们认为,当今LMS的这种缺点限制了现代NLP对与气候相关文本的文本处理的广泛领域的适用性。作为一种补救措施,我们提出了Climatebert,这是一种基于变压器的语言模型,该模型在超过160万段的气候相关文本中进一步审议,这些文本涉及各种来源,例如普通新闻,研究文章和公司的气候报告。我们发现,在蒙版语言模型目标上,ClimateBertleads提高了46%的改善,这反过来又导致各种与气候相关的下游任务(如文本分类,情感分析和事实检查)的错误率降低了3.57%至35.71%。
translated by 谷歌翻译