Metaverse over wireless networks is an emerging use case of the sixth generation (6G) wireless systems, posing unprecedented challenges in terms of its multi-modal data transmissions with stringent latency and reliability requirements. Towards enabling this wireless metaverse, in this article we propose a novel semantic communication (SC) framework by decomposing the metaverse into human/machine agent-specific semantic multiverses (SMs). An SM stored at each agent comprises a semantic encoder and a generator, leveraging recent advances in generative artificial intelligence (AI). To improve communication efficiency, the encoder learns the semantic representations (SRs) of multi-modal data, while the generator learns how to manipulate them for locally rendering scenes and interactions in the metaverse. Since these learned SMs are biased towards local environments, their success hinges on synchronizing heterogeneous SMs in the background while communicating SRs in the foreground, turning the wireless metaverse problem into the problem of semantic multiverse communication (SMC). Based on this SMC architecture, we propose several promising algorithmic and analytic tools for modeling and designing SMC, ranging from distributed learning and multi-agent reinforcement learning (MARL) to signaling games and symbolic AI.
translated by 谷歌翻译
经典的媒体访问控制(MAC)协议是可解释的,但是它们的任务不可能控制信号传导消息(CMS)不适合新兴任务 - 关键任务应用程序。相比之下,基于神经网络(NN)协议模型(NPM)学会生成特定于任务的CMS,但其理由和影响缺乏可解释性。为了填补这一空白,在本文中,我们首次提出了通过将NPM转换为概率逻辑编程语言(ProBlog)编写的可解释的符号图来构建的语义协议模型(SPM)。通过在将NPM视为CM发生器的同时提取和合并共同的CM及其连接,可以可行。通过广泛的模拟,我们证实了SPM在仅占据0.02%内存的同时紧密近似其原始NPM。通过利用其可解释性和记忆效率,我们演示了几种支持SPM的应用程序,例如SPM重新配置,以避免碰撞,并通过语义熵计算和存储多个SPM来比较不同的SPM,以应对非平稳环境。
translated by 谷歌翻译
本文为视觉变压器(VIT)体系结构提供了分布式学习解决方案。与卷积神经网络(CNN)架构相比,VIT通常具有较大的模型尺寸,并且计算昂贵,从而使联合学习(FL)不适合使用。拆分学习(SL)可以通过分裂模型并在拆分层上传达隐藏的表示形式(也称为粉碎的数据)来避开此问题。尽管如此,VIT的粉碎数据与输入数据一样大,在违反数据隐私时否定了SL的通信效率。为了解决这些问题,我们通过随机打孔和压缩原始粉碎的数据来提出一种新形式的切割数据。利用这一点,我们为VIT,CUTMIXSL开发了一个新颖的SL框架,并传达了切割的数据。 cutmixsl不仅降低了通信成本和隐私泄漏,而且固有地涉及cutmix数据增强,从而提高了准确性和可扩展性。模拟证实了cutmixsl的表现优于平行的SL等基线,并将其与SL集成在一起。
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
In both terrestrial and marine ecology, physical tagging is a frequently used method to study population dynamics and behavior. However, such tagging techniques are increasingly being replaced by individual re-identification using image analysis. This paper introduces a contrastive learning-based model for identifying individuals. The model uses the first parts of the Inception v3 network, supported by a projection head, and we use contrastive learning to find similar or dissimilar image pairs from a collection of uniform photographs. We apply this technique for corkwing wrasse, Symphodus melops, an ecologically and commercially important fish species. Photos are taken during repeated catches of the same individuals from a wild population, where the intervals between individual sightings might range from a few days to several years. Our model achieves a one-shot accuracy of 0.35, a 5-shot accuracy of 0.56, and a 100-shot accuracy of 0.88, on our dataset.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
The purpose of this work was to tackle practical issues which arise when using a tendon-driven robotic manipulator with a long, passive, flexible proximal section in medical applications. A separable robot which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. A control input which resolves the redundancy in the kinematics and a physical interpretation of this redundancy are provided. The effect of a static change in the proximal section angle on bending angle error was explored under four testing conditions for a sinusoidal input. Bending angle error increased for increasing proximal section angle for all testing conditions with an average error reduction of 41.48% for retension, 4.28% for hysteresis, and 52.35% for re-tension + hysteresis compensation relative to the baseline case. Two major sources of error in tracking the bending angle were identified: time delay from hysteresis and DC offset from the proximal section angle. Examination of these error sources revealed that the simple hysteresis compensation was most effective for removing time delay and re-tension compensation for removing DC offset, which was the primary source of increasing error. The re-tension compensation was also tested for dynamic changes in the proximal section and reduced error in the final configuration of the tip by 89.14% relative to the baseline case.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
Springs are efficient in storing and returning elastic potential energy but are unable to hold the energy they store in the absence of an external load. Lockable springs use clutches to hold elastic potential energy in the absence of an external load but have not yet been widely adopted in applications, partly because clutches introduce design complexity, reduce energy efficiency, and typically do not afford high-fidelity control over the energy stored by the spring. Here, we present the design of a novel lockable compression spring that uses a small capstan clutch to passively lock a mechanical spring. The capstan clutch can lock up to 1000 N force at any arbitrary deflection, unlock the spring in less than 10 ms with a control force less than 1 % of the maximal spring force, and provide an 80 % energy storage and return efficiency (comparable to a highly efficient electric motor operated at constant nominal speed). By retaining the form factor of a regular spring while providing high-fidelity locking capability even under large spring forces, the proposed design could facilitate the development of energy-efficient spring-based actuators and robots.
translated by 谷歌翻译