从不同扫描仪/部位的有丝分裂数字的检测仍然是研究的重要主题,这是由于其潜力协助临床医生进行肿瘤分级。有丝分裂结构域的概括(MIDOG)2022挑战旨在测试从多种扫描仪和该任务的多种扫描仪和组织类型中看不见数据的检测模型的鲁棒性。我们提供了TIA中心团队采用的方法来应对这一挑战的简短摘要。我们的方法基于混合检测模型,在该模型中,在该模型中进行了有丝分裂候选者,然后被深度学习分类器精炼。在训练图像上的交叉验证在初步测试集上达到了0.816和0.784的F1得分,这证明了我们模型可以从新扫描仪中看不见的数据的普遍性。
translated by 谷歌翻译
肿瘤浸润淋巴细胞(TIL)的定量已被证明是乳腺癌患者预后的独立预测因子。通常,病理学家对含有tils的基质区域的比例进行估计,以获得TILS评分。乳腺癌(Tiger)挑战中肿瘤浸润淋巴细胞旨在评估计算机生成的TILS评分的预后意义,以预测作为COX比例风险模型的一部分的存活率。在这一挑战中,作为Tiager团队,我们已经开发了一种算法,以将肿瘤与基质与基质进行第一部分,然后将肿瘤散装区域用于TILS检测。最后,我们使用这些输出来生成每种情况的TILS分数。在初步测试中,我们的方法达到了肿瘤 - 细胞瘤的加权骰子评分为0.791,而淋巴细胞检测的FROC得分为0.572。为了预测生存,我们的模型达到了0.719的C索引。这些结果在老虎挑战的初步测试排行榜中获得了第一名。
translated by 谷歌翻译
病理诊所中癌症的诊断,预后和治疗性决策现在可以基于对多吉吉像素组织图像的分析,也称为全斜图像(WSIS)。最近,已经提出了深层卷积神经网络(CNN)来得出无监督的WSI表示。这些很有吸引力,因为它们不太依赖于繁琐的专家注释。但是,一个主要的权衡是,较高的预测能力通常以解释性为代价,这对他们的临床使用构成了挑战,通常通常期望决策中的透明度。为了应对这一挑战,我们提出了一个基于Deep CNN的手工制作的框架,用于构建整体WSI级表示。基于有关变压器在自然语言处理领域的内部工作的最新发现,我们将其过程分解为一个更透明的框架,我们称其为手工制作的组织学变压器或H2T。基于我们涉及各种数据集的实验,包括总共5,306个WSI,结果表明,与最近的最新方法相比,基于H2T的整体WSI级表示具有竞争性能,并且可以轻松用于各种下游分析任务。最后,我们的结果表明,H2T框架的最大14倍,比变压器模型快14倍。
translated by 谷歌翻译
核毒素和eosin染色组织学图像中的核分段,分类和定量使得能够提取可解释的细胞基特征,该特征可用于计算病理(CPATH)中的下游可解释模型。然而,对不同核的自动识别面临着主要的挑战,因为有几种不同类型的核,其中一些呈现出大的内部变异性。为了帮助推动CPATH中自动核认可的前进研究和创新,我们组织了结肠核识别和计数(圆锥)挑战。挑战鼓励研究人员开发在CPATH中,在CPATH中,在CPATH中进行当前最大已知的公知的核级数据集进行分割,分类和计数,其中包含大约一半的标记的核。因此,锥形挑战利用核数量超过10倍的核,作为核识别的前一大挑战数据集。如果我们希望在临床环境中部署它们,则对输入变体具有强大的算法很重要。因此,作为这一挑战的一部分,我们还将测试每个提交算法对某些输入变化的敏感性。
translated by 谷歌翻译
联合学习(FL)可以在不共享参与网站的数据的情况下协作学习深层学习模型。在医学图像分析中的FL相对较新,可开放增强功能。在这项研究中,我们提出了一种新的联邦学习方法,用于培训更广泛的模型。所提出的方法利用了客户选择中的随机性,也利用了联合平均过程。我们将FedDropOutvg与FL情景中的几种算法进行比较,用于现实世界多站点组织病理学图像分类任务。我们展示了通过FEDDROPOUDAVG,最终模型可以比其他FL方法更好地实现性能,并且更接近经典的深度学习模型,需要为集中培训共享所有数据。我们在大型数据集上测试训练有素的模型,由21个不同中心组成的120万像素瓷砖。为了评估所提出的方法的泛化能力,我们使用来自FL中的中心的中心的RET-OUT测试集,并且来自其他独立中心的看不见的数据,其数据未在联邦培训中使用。我们表明,拟议的方法比其他最先进的联邦培训方法更广泛。据我们所知,我们的是第一个在医学图像分析任务的联合设置中使用随机客户端和本地模型参数选择过程的研究。
translated by 谷歌翻译
用于计算病理(CPATH)的深度分割模型的发展可以帮助培养可解释的形态生物标志物的调查。然而,这些方法的成功存在主要瓶颈,因为监督的深度学习模型需要丰富的准确标记数据。该问题在CPATH领域加剧,因为详细注释的产生通常需要对病理学家的输入能够区分不同的组织构建体和核。手动标记核可能不是收集大规模注释数据集的可行方法,特别是当单个图像区域可以包含数千个不同的单元时。但是,仅依靠自动生成注释将限制地面真理的准确性和可靠性。因此,为了帮助克服上述挑战,我们提出了一种多级注释管道,以使大规模数据集进行用于组织学图像分析,具有病理学家in-循环的细化步骤。使用本市管道,我们生成最大的已知核实例分段和分类数据集,其中包含近百万分之一的H&E染色的结肠组织中标记的细胞核。我们发布了DataSet并鼓励研究社区利用它来推动CPATH中下游小区模型的发展。
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译