充电站在开发充电基础设施的区域中的放置是电动汽车未来成功(EV)的关键组成部分。在纽约的奥尔巴尼县,EV人口的预期增加需要额外的充电站,以在整个充电基础设施中保持足够的效率。鉴于预测的充电需求和当前的充电位置,增强学习(RL)的新型应用程序(RL)能够找到新的充电站的最佳位置。影响收费需求预测的最重要因素包括交通密度,EV登记和靠近某些类型的公共建筑。建议的RL框架可以完善并应用于世界各地的城市,以优化充电站的放置。
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
State-of-the-art object detectors are treated as black boxes due to their highly non-linear internal computations. Even with unprecedented advancements in detector performance, the inability to explain how their outputs are generated limits their use in safety-critical applications. Previous work fails to produce explanations for both bounding box and classification decisions, and generally make individual explanations for various detectors. In this paper, we propose an open-source Detector Explanation Toolkit (DExT) which implements the proposed approach to generate a holistic explanation for all detector decisions using certain gradient-based explanation methods. We suggests various multi-object visualization methods to merge the explanations of multiple objects detected in an image as well as the corresponding detections in a single image. The quantitative evaluation show that the Single Shot MultiBox Detector (SSD) is more faithfully explained compared to other detectors regardless of the explanation methods. Both quantitative and human-centric evaluations identify that SmoothGrad with Guided Backpropagation (GBP) provides more trustworthy explanations among selected methods across all detectors. We expect that DExT will motivate practitioners to evaluate object detectors from the interpretability perspective by explaining both bounding box and classification decisions.
translated by 谷歌翻译
A challenge in spoken language translation is that plenty of spoken content is long-form, but short units are necessary for obtaining high-quality translations. To address this mismatch, we fine-tune a general-purpose, large language model to split long ASR transcripts into segments that can be independently translated so as to maximize the overall translation quality. We compare to several segmentation strategies and find that our approach improves BLEU score on three languages by an average of 2.7 BLEU overall compared to an automatic punctuation baseline. Further, we demonstrate the effectiveness of two constrained decoding strategies to improve well-formedness of the model output from above 99% to 100%.
translated by 谷歌翻译
The Conditional Neural Process (CNP) family of models offer a promising direction to tackle few-shot problems by achieving better scalability and competitive predictive performance. However, the current CNP models only capture the overall uncertainty for the prediction made on a target data point. They lack a systematic fine-grained quantification on the distinct sources of uncertainty that are essential for model training and decision-making under the few-shot setting. We propose Evidential Conditional Neural Processes (ECNP), which replace the standard Gaussian distribution used by CNP with a much richer hierarchical Bayesian structure through evidential learning to achieve epistemic-aleatoric uncertainty decomposition. The evidential hierarchical structure also leads to a theoretically justified robustness over noisy training tasks. Theoretical analysis on the proposed ECNP establishes the relationship with CNP while offering deeper insights on the roles of the evidential parameters. Extensive experiments conducted on both synthetic and real-world data demonstrate the effectiveness of our proposed model in various few-shot settings.
translated by 谷歌翻译
Causal phenomena associated with rare events frequently occur across a wide range of engineering and mathematical problems, such as risk-sensitive safety analysis, accident analysis and prevention, and extreme value theory. However, current methods for causal discovery are often unable to uncover causal links between random variables that manifest only when the variables first experience low-probability realizations. To address this issue, we introduce a novel algorithm that performs statistical independence tests on data collected from time-invariant dynamical systems in which rare but consequential events occur. We seek to understand if the state of the dynamical system causally affects the likelihood of the rare event. In particular, we exploit the time-invariance of the underlying data to superimpose the occurrences of rare events, thus creating a new dataset, with rare events are better represented, on which conditional independence tests can be more efficiently performed. We provide non-asymptotic bounds for the consistency of our algorithm, and validate the performance of our algorithm across various simulated scenarios, with applications to traffic accidents.
translated by 谷歌翻译
Automated emotion recognition in speech is a long-standing problem. While early work on emotion recognition relied on hand-crafted features and simple classifiers, the field has now embraced end-to-end feature learning and classification using deep neural networks. In parallel to these models, researchers have proposed several data augmentation techniques to increase the size and variability of existing labeled datasets. Despite many seminal contributions in the field, we still have a poor understanding of the interplay between the network architecture and the choice of data augmentation. Moreover, only a handful of studies demonstrate the generalizability of a particular model across multiple datasets, which is a prerequisite for robust real-world performance. In this paper, we conduct a comprehensive evaluation of popular deep learning approaches for emotion recognition. To eliminate bias, we fix the model architectures and optimization hyperparameters using the VESUS dataset and then use repeated 5-fold cross validation to evaluate the performance on the IEMOCAP and CREMA-D datasets. Our results demonstrate that long-range dependencies in the speech signal are critical for emotion recognition and that speed/rate augmentation offers the most robust performance gain across models.
translated by 谷歌翻译
We report on novel investigations into training models that make sentences concise. We define the task and show that it is different from related tasks such as summarization and simplification. For evaluation, we release two test sets, consisting of 2000 sentences each, that were annotated by two and five human annotators, respectively. We demonstrate that conciseness is a difficult task for which zero-shot setups with large neural language models often do not perform well. Given the limitations of these approaches, we propose a synthetic data generation method based on round-trip translations. Using this data to either train Transformers from scratch or fine-tune T5 models yields our strongest baselines that can be further improved by fine-tuning on an artificial conciseness dataset that we derived from multi-annotator machine translation test sets.
translated by 谷歌翻译
Consider two brands that want to jointly test alternate web experiences for their customers with an A/B test. Such collaborative tests are today enabled using \textit{third-party cookies}, where each brand has information on the identity of visitors to another website. With the imminent elimination of third-party cookies, such A/B tests will become untenable. We propose a two-stage experimental design, where the two brands only need to agree on high-level aggregate parameters of the experiment to test the alternate experiences. Our design respects the privacy of customers. We propose an estimater of the Average Treatment Effect (ATE), show that it is unbiased and theoretically compute its variance. Our demonstration describes how a marketer for a brand can design such an experiment and analyze the results. On real and simulated data, we show that the approach provides valid estimate of the ATE with low variance and is robust to the proportion of visitors overlapping across the brands.
translated by 谷歌翻译
近年来,《虚假新闻》的数据科学研究已经筹集了很大的势头,可以说是大型公共基准数据集的出现。尽管在媒体研究中,性别偏见是一个遍布新闻媒体的问题,但对性别偏见与虚假新闻之间的关系几乎没有探索。在这项工作中,我们提供了对假新闻的性别偏见的首次实证分析,利用公共基准数据集利用简单且基于透明的词典的方法。我们的分析确定了在三个方面的假新闻中,性别偏见的普遍性增加,即丰富,情感和近端单词。我们分析中的见解提供了一个强有力的论点,即性别偏见需要成为对假新闻研究的重要考虑因素。
translated by 谷歌翻译