Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
旨在估算每个广告接触点在转换旅程中的贡献的多点触摸归因(MTA)对于预算分配和自动广告至关重要。现有方法首先训练模型,以通过历史数据来预测广告旅程的转换概率,并使用反事实预测来计算每个接触点的归因。这些作品的假设是转换预测模型是公正的,即,它可以对任何随机分配的旅程(包括事实和反事实)提供准确的预测。然而,由于根据用户偏好推荐裸露的广告,因此这个假设并不总是存在。用户的这种混杂偏见将导致反事实预测中的分布(OOD)问题,并导致归因中的概念漂移。在本文中,我们定义了因果MTA任务,并提出Causalmta来消除用户偏好的影响。它从系统地消除了静态和动态偏好的混杂偏见,以使用历史数据来学习转换预测模型。我们还提供理论分析,以证明Causalmta可以学习具有足够数据的无偏见模型。电子商务公司的公共数据集和印象数据的广泛实验表明,Causalmta不仅比最先进的方法实现了更好的预测性能,而且还可以在不同的广告渠道上产生有意义的属性信用。
translated by 谷歌翻译
现实的高光谱图像(HSI)超分辨率(SR)技术旨在从其低分辨率(LR)对应物中产生具有更高光谱和空间忠诚的高分辨率(HR)HSI。生成的对抗网络(GAN)已被证明是图像超分辨率的有效深入学习框架。然而,现有GaN的模型的优化过程经常存在模式崩溃问题,导致光谱间不变重建容量有限。这可能导致所生成的HSI上的光谱空间失真,尤其是具有大的升级因子。为了缓解模式崩溃的问题,这项工作提出了一种与潜在编码器(Le-GaN)耦合的新型GaN模型,其可以将产生的光谱空间特征从图像空间映射到潜在空间并产生耦合组件正规化生成的样本。基本上,我们将HSI视为嵌入在潜在空间中的高维歧管。因此,GaN模型的优化被转换为学习潜在空间中的高分辨率HSI样本的分布的问题,使得产生的超分辨率HSI的分布更接近其原始高分辨率对应物的那些。我们对超级分辨率的模型性能进行了实验评估及其在缓解模式崩溃中的能力。基于具有不同传感器(即Aviris和UHD-185)的两种实际HSI数据集进行了测试和验证,用于各种升高因素并增加噪声水平,并与最先进的超分辨率模型相比(即Hyconet,LTTR,Bagan,SR-GaN,Wgan)。
translated by 谷歌翻译
现代视频文本检索框架基本上由三个部分组成:视频编码器,文本编码器和相似性。随着Visual和Textual表示学习的成功,在视频文本检索领域也采用了基于变压器的编码器和融合方法。在本报告中,我们呈现Clip2TV,旨在探索关键元素在基于变压器的方法中。为实现这一目标,我们首先重新审视一些对多模态学习的工作,然后将一些技术介绍到视频文本检索中,最后通过不同配置的大量实验进行评估。值得注意的是,Clip2TV在MSR-VTT数据集上实现了52.9 @ R1,优先表现出先前的SOTA结果为4.1%。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译
聊天和个人助理形式的对话系统正在越来越纳入人们的生命。现代对话系统可能会考虑采用拟人的人物,模仿社会人口统计团体对用户来说更接近和值得信赖。但是,通过一个人的通过可能导致偏见的采用。在本文中,我们向对话系统中的角色偏见提供了第一个大规模研究,并对不同社会阶层,性取向,种族和性别的人物进行分析。我们将人格偏见定义为响应的有害差异(例如,不同的冒险程度,与有害陈述的不同程度)产生从采用不同的人口统计学。此外,我们介绍了一个开源框架,UnitPersonabias,以探索对话系统中的角色偏见。通过分析搅拌机和对话对话系统,我们观察到,与不使用任何一个人的人,采用人物实际上可以减少有害响应。此外,我们发现角色选择可以影响所生成的响应中的危害程度,因此应在部署前系统地进行系统。我们还分析了角色如何导致对特定人口统计数据的不同危害。
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
A further understanding of cause and effect within observational data is critical across many domains, such as economics, health care, public policy, web mining, online advertising, and marketing campaigns. Although significant advances have been made to overcome the challenges in causal effect estimation with observational data, such as missing counterfactual outcomes and selection bias between treatment and control groups, the existing methods mainly focus on source-specific and stationary observational data. Such learning strategies assume that all observational data are already available during the training phase and from only one source. This practical concern of accessibility is ubiquitous in various academic and industrial applications. That's what it boiled down to: in the era of big data, we face new challenges in causal inference with observational data, i.e., the extensibility for incrementally available observational data, the adaptability for extra domain adaptation problem except for the imbalance between treatment and control groups, and the accessibility for an enormous amount of data. In this position paper, we formally define the problem of continual treatment effect estimation, describe its research challenges, and then present possible solutions to this problem. Moreover, we will discuss future research directions on this topic.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译