Human Activity Recognition (HAR) is one of the core research areas in mobile and wearable computing. With the application of deep learning (DL) techniques such as CNN, recognizing periodic or static activities (e.g, walking, lying, cycling, etc.) has become a well studied problem. What remains a major challenge though is the sporadic activity recognition (SAR) problem, where activities of interest tend to be non periodic, and occur less frequently when compared with the often large amount of irrelevant background activities. Recent works suggested that sequential DL models (such as LSTMs) have great potential for modeling nonperiodic behaviours, and in this paper we studied some LSTM training strategies for SAR. Specifically, we proposed two simple yet effective LSTM variants, namely delay model and inverse model, for two SAR scenarios (with and without time critical requirement). For time critical SAR, the delay model can effectively exploit predefined delay intervals (within tolerance) in form of contextual information for improved performance. For regular SAR task, the second proposed, inverse model can learn patterns from the time series in an inverse manner, which can be complementary to the forward model (i.e.,LSTM), and combining both can boost the performance. These two LSTM variants are very practical, and they can be deemed as training strategies without alteration of the LSTM fundamentals. We also studied some additional LSTM training strategies, which can further improve the accuracy. We evaluated our models on two SAR and one non-SAR datasets, and the promising results demonstrated the effectiveness of our approaches in HAR applications.
translated by 谷歌翻译
In real teaching scenarios, an excellent teacher always teaches what he (or she) is good at but the student is not. This method gives the student the best assistance in making up for his (or her) weaknesses and becoming a good one overall. Enlightened by this, we introduce the approach to the knowledge distillation framework and propose a data-based distillation method named ``Teaching what you Should Teach (TST)''. To be specific, TST contains a neural network-based data augmentation module with the priori bias, which can assist in finding what the teacher is good at while the student are not by learning magnitudes and probabilities to generate suitable samples. By training the data augmentation module and the generalized distillation paradigm in turn, a student model that has excellent generalization ability can be created. To verify the effectiveness of TST, we conducted extensive comparative experiments on object recognition (CIFAR-100 and ImageNet-1k), detection (MS-COCO), and segmentation (Cityscapes) tasks. As experimentally demonstrated, TST achieves state-of-the-art performance on almost all teacher-student pairs. Furthermore, we conduct intriguing studies of TST, including how to solve the performance degradation caused by the stronger teacher and what magnitudes and probabilities are needed for the distillation framework.
translated by 谷歌翻译
标签嵌入式字典学习(DL)算法通过引入鉴别信息来生成有影响的词典。然而,存在限制:所有标签嵌入式DL方法依赖于由于这种方式的标签仅实现了监督学习的理想性能。在半监督和无人监督的学习中,它不再有效。灵感来自自我监督学习的概念(例如,设置借口任务来为下游任务生成通用模型),我们提出了一个自我监督的字典学习(SSDL)框架来解决这一挑战。具体来说,我们首先设计一个$ p $ -laplacian注意超图(Pahl)块作为借口任务,为DL生成伪软标签。然后,我们采用伪标签来培训来自主标签嵌入的DL方法的字典。我们在两个人类活动识别数据集中评估我们的SSDL。与其他最先进方法的比较结果表明了SSDL的效率。
translated by 谷歌翻译
近年来,研究人员越来越关注几次拍摄学习(FSL)任务,以解决数据稀缺问题。标准FSL框架由两个组件组成:i)预先列车。采用基础数据以生成基于CNN的特征提取模型(FEM)。 ii)Meta-Test。将培训的有关应用于新颖的数据(类别与基本数据不同)以获取特征嵌入物并识别它们。虽然研究人员在FSL中取得了显着突破,但仍然存在根本问题。由于具有基础数据的训练有素的有限元通常不能完美地适应新颖的类,因此新的数据的特征可能导致分布换档问题。为了解决这一挑战,我们假设即使基于不同FEMS的大多数决策被视为\ Texit {弱决策},它们也不适用于所有类别,它们仍然在某些特定类别中仍然变得恰到貌。灵感来自这种假设,我们提出了一种新颖的方法多决定定影模型(MDFM),其基于多个FEMS全面地考虑了模拟的决策,以提高模型的功效和鲁棒性。 MDFM是一种简单,灵活的非参数方法,可直接适用于现有的FEM。此外,我们将所提出的MDFM扩展到两个FSL设置(即,监督和半监督设置)。我们在五个基准数据集中评估所提出的方法,与最先进的3.4%-7.3 \%的显着改善。
translated by 谷歌翻译
少量学习(FSL)旨在解决数据稀缺问题。标准FSL框架由两个组件组成:(1)预先火车。采用基础数据以生成基于CNN的特征提取模型(FEM)。 (2)元测试。应用训练有素的有限元素以获取新的数据的特征并识别它们。 FSL严重依赖于FEM的设计。然而,各种有限元有明显的重点。例如,若干可以更关注轮廓信息,而其他人可以特别强调纹理信息。单个头功能只是样本的单面表示。除了跨域的负影响(例如,训练有素的有限元件无瑕疵地适应新颖的类),与地面真理分布相比,新型数据的分布可能具有一定程度的偏差,如分配转移 - 问题(DSP)。为了解决DSP,我们提出了多头功能协作(MHFC)算法,该算法试图将多头特征(例如,从各种FEM中提取的多个功能)投影到统一空间并融合它们以捕获更多辨别信息。通常,首先,我们介绍子空间学习方法来转换多头特征以对准低维表示。它通过学习具有更强大的歧视的功能来纠正DSP,并克服了来自不同头部特征的不一致测量尺度的问题。然后,我们设计注意力块以自动更新每个头部功能的组合权重。它全面考虑各种观点的贡献,进一步提高了特征的歧视。我们评估了五个基准数据集(包括跨域实验)的提出方法,与最先进的情况下实现了2.1%-7.8%的显着改善。
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
Hybrid unmanned aerial vehicles (UAVs) integrate the efficient forward flight of fixed-wing and vertical takeoff and landing (VTOL) capabilities of multicopter UAVs. This paper presents the modeling, control and simulation of a new type of hybrid micro-small UAVs, coined as lifting-wing quadcopters. The airframe orientation of the lifting wing needs to tilt a specific angle often within $ 45$ degrees, neither nearly $ 90$ nor approximately $ 0$ degrees. Compared with some convertiplane and tail-sitter UAVs, the lifting-wing quadcopter has a highly reliable structure, robust wind resistance, low cruise speed and reliable transition flight, making it potential to work fully-autonomous outdoor or some confined airspace indoor. In the modeling part, forces and moments generated by both lifting wing and rotors are considered. Based on the established model, a unified controller for the full flight phase is designed. The controller has the capability of uniformly treating the hovering and forward flight, and enables a continuous transition between two modes, depending on the velocity command. What is more, by taking rotor thrust and aerodynamic force under consideration simultaneously, a control allocation based on optimization is utilized to realize cooperative control for energy saving. Finally, comprehensive Hardware-In-the-Loop (HIL) simulations are performed to verify the advantages of the designed aircraft and the proposed controller.
translated by 谷歌翻译
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis. With the recent advances in deep learning, graph neural networks have been used for link prediction and have achieved state-of-the-art performance. Nevertheless, existing methods developed for this purpose are typically discriminative, computing features of local subgraphs around two neighboring nodes and predicting potential links between them from the perspective of subgraph classification. In this formalism, the selection of enclosing subgraphs and heuristic structural features for subgraph classification significantly affects the performance of the methods. To overcome this limitation, this paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP. Instead of sampling positive and negative links and heuristically computing the features of their enclosing subgraphs, GraphLP utilizes the feature learning ability of deep-learning models to automatically extract the structural patterns of graphs for link prediction under the assumption that real-world graphs are not locally isolated. Moreover, GraphLP explores high-order connectivity patterns to utilize the hierarchical organizational structures of graphs for link prediction. Our experimental results on all common benchmark datasets from different applications demonstrate that the proposed method consistently outperforms other state-of-the-art methods. Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
translated by 谷歌翻译