深度学习目前是机器学习中最重要的分支,在语音识别,计算机视觉,图像分类和医学成像分析中的应用。植物识别是可以使用图像分类通过其叶子识别植物物种的领域之一。植物学家通过亲自检查将大量时间用于识别植物物种。本文描述了一种剖析瑞典叶子和识别植物物种的颜色图像的方法。为了实现更高的准确性,该任务是在预先训练的分类器VGG-19的帮助下使用转移学习完成的。分类的四个主要过程是图像预处理,图像增强,特征提取和识别,这些过程是作为整体模型评估的一部分进行的。 VGG-19分类器通过采用预定义的隐藏层(例如卷积层,最大池层和完全连接的层)来掌握叶子的特征,并最终使用Soft-Max层为所有植物类生成特征表示。该模型获得了与瑞典叶数据集的各个方面相关的知识,其中包含15种树类,并有助于预测未知植物的适当类别,准确性为99.70%,这比以前报告的研究工作高。
translated by 谷歌翻译
检测裂缝是监测结构健康和确保结构安全的关键任务。裂纹检测的手动过程是耗时的,对检查员进行了主观。一些研究人员尝试使用传统的图像处理或基于学习的技术来解决此问题。但是,它们的工作范围仅限于检测单一类型的表面(墙壁,人行道,玻璃等)上的裂缝。用于评估这些方法的指标在整个文献中也有所不同,这使得比较技术具有挑战性。本文通过结合先前可用的数据集并通过解决每个数据集中的固有问题(例如噪声和扭曲)来解决这些问题。我们还提出了结合图像处理和深度学习模型的管道。最后,我们在新数据集上对这些指标的建议模型的结果进行了基准测试,并将它们与文献中的最新模型进行了比较。
translated by 谷歌翻译
在本文中,我们使用语言数据收集的现场方法讨论了四种低资源印度语语言的演讲语料库的过程中的工作 - Awadhi,Bhojpuri,Braj和Magahi。目前,语料库的总大小约为18小时(每种语言约4-5小时),并用语法信息进行转录和注释,例如词性标签,形态学特征和普遍的依赖关系。我们讨论了以这些语言收集数据的方法,其中大多数是在Covid-19大流行中心进行的,其中之一是为低收入群体带来一些额外的收入,说这些语言。在本文中,我们还讨论了这些语言中自动语音识别系统的基线实验的结果。
translated by 谷歌翻译
在本文中,我们讨论了用分层,细粒度标记标记不同类型的侵略和“上下文”的分层的多语言数据集的开发。这里,这里,这里由对话线程定义,其中发生特定的评论以及评论对先前注释执行的话语角色的“类型”。在此处讨论的初始数据集(并作为逗号@图标共享任务的一部分提供),包括四种语言的15,000名注释评论 - Meitei,Bangla,Hindi和印度英语 - 从各种社交媒体平台收集作为Youtube,Facebook,Twitter和电报。正如通常在社交媒体网站上,大量这些评论都是多语种的,主要是与英语混合的代码混合。本文给出了用于注释的标签的详细描述以及开发多标签的过程的过程,该方法可用于标记具有各种侵略和偏差的评论,包括性别偏见,宗教不宽容(称为标签中的公共偏见),类/种姓偏见和民族/种族偏见。我们还定义并讨论已用于标记通过评论执行的异常发挥作用的标记的标签,例如攻击,防御等。我们还对数据集的统计分析以及我们的基线实验的结果进行了发展使用DataSet开发的自动攻击识别系统。
translated by 谷歌翻译
深度学习领域目睹了对极端计算和内存密集型神经网络的显着转变。这些较新的较大模型使研究人员能够推进各种领域的最先进的工具。这种现象刺激了在更多的硬件加速器上产生了针对神经网络的分布式训练的算法。在本文中,我们讨论并比较了当前的最先进的框架,以实现大规模的分布式深度学习。首先,我们调查分布式学习中的当前实践,并确定所使用的不同类型的并行性。然后,我们提出了对大型图像和语言培训任务的性能进行了经验结果。此外,我们解决了他们的统计效率和内存消耗行为。根据我们的结果,我们讨论了阻碍性能的每个框架的算法和实现部分。
translated by 谷歌翻译
在过去几年中,培训最先进的神经网络的记忆要求远远超过了现代硬件加速器的DRAM能力。这仍然需要开发有效的算法,并在大规模的基于GPU的集群上并行培训这些神经网络。由于在现代GPU上的计算相对便宜,因此在这些并行训练算法中设计和实现极其有效的通信对于提取最大性能至关重要。本文介绍了Axonn,一个并行深度学习框架,用于利用异步和消息驱动的执行来安排每个GPU上的神经网络操作,从而降低GPU空闲时间并最大限度地提高硬件效率。通过使用CPU存储器作为划痕空间来定期在训练期间定期卸载数据,AXONN能够将GPU存储器消耗降低四次。这使我们可以将每个GPU的参数数量增加四次,从而减少通信量并将性能提高超过13%。在48-384 NVIDIA TESLA V100 GPU的大型变压器模型上进行了12-100亿参数,Axonn实现了理论峰的49.4-54.78%的每GPU吞吐量,并将培训时间减少22-37天(15-25与最先进的加速度)。
translated by 谷歌翻译
We introduce Argoverse 2 (AV2) - a collection of three datasets for perception and forecasting research in the self-driving domain. The annotated Sensor Dataset contains 1,000 sequences of multimodal data, encompassing high-resolution imagery from seven ring cameras, and two stereo cameras in addition to lidar point clouds, and 6-DOF map-aligned pose. Sequences contain 3D cuboid annotations for 26 object categories, all of which are sufficiently-sampled to support training and evaluation of 3D perception models. The Lidar Dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose. This dataset is the largest ever collection of lidar sensor data and supports self-supervised learning and the emerging task of point cloud forecasting. Finally, the Motion Forecasting Dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene. Models are tasked with the prediction of future motion for "scored actors" in each scenario and are provided with track histories that capture object location, heading, velocity, and category. In all three datasets, each scenario contains its own HD Map with 3D lane and crosswalk geometry - sourced from data captured in six distinct cities. We believe these datasets will support new and existing machine learning research problems in ways that existing datasets do not. All datasets are released under the CC BY-NC-SA 4.0 license.
translated by 谷歌翻译
Object movement identification is one of the most researched problems in the field of computer vision. In this task, we try to classify a pixel as foreground or background. Even though numerous traditional machine learning and deep learning methods already exist for this problem, the two major issues with most of them are the need for large amounts of ground truth data and their inferior performance on unseen videos. Since every pixel of every frame has to be labeled, acquiring large amounts of data for these techniques gets rather expensive. Recently, Zhao et al. [1] proposed one of a kind Arithmetic Distribution Neural Network (ADNN) for universal background subtraction which utilizes probability information from the histogram of temporal pixels and achieves promising results. Building onto this work, we developed an intelligent video surveillance system that uses ADNN architecture for motion detection, trims the video with parts only containing motion, and performs anomaly detection on the trimmed video.
translated by 谷歌翻译
The machine translation mechanism translates texts automatically between different natural languages, and Neural Machine Translation (NMT) has gained attention for its rational context analysis and fluent translation accuracy. However, processing low-resource languages that lack relevant training attributes like supervised data is a current challenge for Natural Language Processing (NLP). We incorporated a technique known Active Learning with the NMT toolkit Joey NMT to reach sufficient accuracy and robust predictions of low-resource language translation. With active learning, a semi-supervised machine learning strategy, the training algorithm determines which unlabeled data would be the most beneficial for obtaining labels using selected query techniques. We implemented two model-driven acquisition functions for selecting the samples to be validated. This work uses transformer-based NMT systems; baseline model (BM), fully trained model (FTM) , active learning least confidence based model (ALLCM), and active learning margin sampling based model (ALMSM) when translating English to Hindi. The Bilingual Evaluation Understudy (BLEU) metric has been used to evaluate system results. The BLEU scores of BM, FTM, ALLCM and ALMSM systems are 16.26, 22.56 , 24.54, and 24.20, respectively. The findings in this paper demonstrate that active learning techniques helps the model to converge early and improve the overall quality of the translation system.
translated by 谷歌翻译
We study the problem of planning under model uncertainty in an online meta-reinforcement learning (RL) setting where an agent is presented with a sequence of related tasks with limited interactions per task. The agent can use its experience in each task and across tasks to estimate both the transition model and the distribution over tasks. We propose an algorithm to meta-learn the underlying structure across tasks, utilize it to plan in each task, and upper-bound the regret of the planning loss. Our bound suggests that the average regret over tasks decreases as the number of tasks increases and as the tasks are more similar. In the classical single-task setting, it is known that the planning horizon should depend on the estimated model's accuracy, that is, on the number of samples within task. We generalize this finding to meta-RL and study this dependence of planning horizons on the number of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing discount factors, and we validate its significance empirically.
translated by 谷歌翻译