In molecular research, simulation \& design of molecules are key areas with significant implications for drug development, material science, and other fields. Current classical computational power falls inadequate to simulate any more than small molecules, let alone protein chains on hundreds of peptide. Therefore these experiment are done physically in wet-lab, but it takes a lot of time \& not possible to examine every molecule due to the size of the search area, tens of billions of dollars are spent every year in these research experiments. Molecule simulation \& design has lately advanced significantly by machine learning models, A fresh perspective on the issue of chemical synthesis is provided by deep generative models for graph-structured data. By optimising differentiable models that produce molecular graphs directly, it is feasible to avoid costly search techniques in the discrete and huge space of chemical structures. But these models also suffer from computational limitations when dimensions become huge and consume huge amount of resources. Quantum Generative machine learning in recent years have shown some empirical results promising significant advantages over classical counterparts.
translated by 谷歌翻译
因果和归因研究对于地球科学发现至关重要,对于为气候,生态和水政策提供信息至关重要。但是,当前的方法需要与科学和利益相关者挑战的复杂性以及数据可用性以及数据驱动方法的充分性相结合。除非通过物理学进行仔细的通知,否则它们会冒着将相关性与因果关系相关或因估计不准确而淹没的风险。鉴于自然实验,对照试验,干预措施和反事实检查通常是不切实际的,因此已经开发了信息理论方法,并在地球科学中不断完善。在这里,我们表明,基于转移熵的因果图最近在具有备受瞩目的发现的地球科学中变得流行,即使增强具有统计学意义,也可能是虚假的。我们开发了一种基于子样本的合奏方法,用于鲁棒性因果分析。模拟数据以及气候和生态水文中的观察表明,这种方法的鲁棒性和一致性。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
临时团队合作的进步有可能创建在现实世界应用程序中合作的代理商。但是,部署在现实世界中的代理人容易受到颠覆它们的意图的对手。在临时团队工作中,几乎没有研究对手的存在。我们解释了扩展临时团队工作以包括对手的存在的重要性,并澄清了为什么这个问题很困难。然后,我们提出了一些在临时团队合作中的新研究机会的指示,这会导致更强大的多代理网络物理基础设施系统。
translated by 谷歌翻译
可驱动区域的实时分割在完成汽车的自主感知中起着至关重要的作用。最近,使用深度学习的图像分割模型开发了一些快速的进步。但是,大多数进步都是在模型架构设计中取得的。在解决与细分有关的任何有监督的深度学习问题时,一个人构建的模型的成功取决于我们用于该模型的输入培训数据的数量和质量。该数据应包含良好的各种图像,以更好地工作分割模型。与数据集中的注释有关的问题可能会导致该模型在测试和验证中的压倒性I型和II型错误中得出结论,在试图解决现实世界问题时造成恶意问题。为了解决这个问题并使我们的模型更加准确,动态和健壮,数据增强涉及使用,因为它有助于扩展我们的样本培训数据并使其更好,整体上更加多样化。因此,在我们的研究中,我们专注于通过分析预先存在的图像数据集并相应地进行增强来研究数据增强的好处。我们的结果表明,现有最新模型(或SOTA)模型的性能和鲁棒性可以大大增加,而不会增加模型复杂性或推理时间。仅在对当今广泛使用中的其他几种增强方法和策略进行彻底研究及其相应的效果之后,仅在本文中决定并使用的增强作用。我们所有的结果都在广泛使用的CityScapes数据集上报告。
translated by 谷歌翻译
尖峰神经网络(SNN)已成为用于分类任务的硬件有效体系结构。基于尖峰的编码的惩罚是缺乏完全使用尖峰执行的通用训练机制。已经进行了几项尝试,用于采用在非加速人工神经网络(ANN)中使用的强大反向传播(BP)技术:(1)SNN可以通过外部计算的数值梯度来训练。 (2)基于天然尖峰的学习的主要进步是使用具有分阶段的前向/向后传递的尖峰时间依赖性可塑性(STDP)的近似反向传播。但是,在此类阶段之间的信息传输需要外部内存和计算访问。这是神经形态硬件实现的挑战。在本文中,我们提出了一种基于随机SNN的后式Prop(SSNN-BP)算法,该算法利用复合神经元同时计算前向通行激活,并用尖峰明确计算前向传递梯度。尽管签名的梯度值是基于SPIKE的表示的挑战,但我们通过将梯度信号分为正和负流来解决这一问题。复合神经元以随机尖峰传播的形式编码信息,并将反向传播的权重更新转换为时间和空间上局部离散的STDP类似STDP的Spike Concike更新,使其与硬件友好的电阻式处理单元(RPU)兼容。此外,我们的方法使用足够长的尖峰训练来接近BP ANN基线。最后,我们表明,可以通过强制执行胜利者的抑制性横向连接来实现软磁体交叉渗透损失函数。我们的SNN通过与MNIST,时尚和扩展的MNIST数据集的ANN相当的性能来表现出极好的概括。因此,SSNN-BP可以使BP与纯粹基于尖峰的神经形态硬件兼容。
translated by 谷歌翻译
我们介绍了一种新的合成数据生成器PSP-HDRI $+$,该$+$被证明是ImageNet和其他大规模合成数据对应物的卓越预训练替代方案。我们证明,使用合成数据的预训练将产生一个更通用的模型,即使在分布外(OOD)集测试时,该模型的性能也比替代方案更好。此外,使用由人关键点估计指标指导的消融研究,具有现成的模型架构,我们展示了如何操纵我们的合成数据生成器以进一步提高模型性能。
translated by 谷歌翻译
Convincing people to get vaccinated against COVID-19 is a key societal challenge in the present times. As a first step towards this goal, many prior works have relied on social media analysis to understand the specific concerns that people have towards these vaccines, such as potential side-effects, ineffectiveness, political factors, and so on. Though there are datasets that broadly classify social media posts into Anti-vax and Pro-Vax labels, there is no dataset (to our knowledge) that labels social media posts according to the specific anti-vaccine concerns mentioned in the posts. In this paper, we have curated CAVES, the first large-scale dataset containing about 10k COVID-19 anti-vaccine tweets labelled into various specific anti-vaccine concerns in a multi-label setting. This is also the first multi-label classification dataset that provides explanations for each of the labels. Additionally, the dataset also provides class-wise summaries of all the tweets. We also perform preliminary experiments on the dataset and show that this is a very challenging dataset for multi-label explainable classification and tweet summarization, as is evident by the moderate scores achieved by some state-of-the-art models. Our dataset and codes are available at: https://github.com/sohampoddar26/caves-data
translated by 谷歌翻译
El Nino Southern振荡(ENSO)是热带中央和东太平洋的海面温度(SST)的半周期波动,通过远程依赖或电信连接,影响世界各地的区域水文中的际变化。最近的研究表明了改进ENSO预测以及用于了解电信连接的复杂网络(CN)的深度学习(DL)方法的价值。然而,预测对Enso驱动的河流流动的差距包括DL的黑匣子性质,使用简单的ENSO指数来描述复杂的现象并将基于DL的ENSO预测翻译成河流预测。在这里,我们显示可解释的DL(XDL)方法,基于显着性图,可以提取全球SST中包含的可解释的预测信息,并发现对河流的新型SST信息区域和依赖结构,这些信息与气候网络结构串联,使得改进的预测性理解。我们的结果揭示了全球SST超越ENSO指数的更多信息内容,开发了对SSTS影响河流的新了解,并产生了与不确定性的改进的河流预测。观察,重新分析数据和地球系统模型模拟用于展示基于XDL-CN基于互际和分支尺度的气候预测的方法的价值。
translated by 谷歌翻译
本文调查了具有不平等专业知识的组织之间竞争的动态。多智能体增强学习已被用来模拟和理解各种激励方案的影响,旨在抵消这种不等式。我们设计触摸标记,基于众所周知的多助手粒子环境的游戏,其中两支球队(弱,强),不平等但不断变化的技能水平相互竞争。对于培训此类游戏,我们提出了一种新颖的控制器辅助多智能体增强学习算法\我们的\,它使每个代理商携带策略的集合以及通过选择性地分区示例空间,触发智能角色划分队友。使用C-MADDPG作为潜在的框架,我们向弱小的团队提出了激励计划,使两队的最终奖励成为同一个。我们发现尽管激动人心,但弱小队的最终奖励仍然缺乏强大的团​​队。在检查中,我们意识到弱小球队的整体激励计划并未激励该团队中的较弱代理来学习和改进。要抵消这一点,我们现在特别激励了较弱的球员学习,因此,观察到超越初始阶段的弱小球队与更强大的团队表现。本文的最终目标是制定一种动态激励计划,不断平衡两支球队的奖励。这是通过设计富有奖励的激励计划来实现的,该计划从环境中取出最低信息。
translated by 谷歌翻译