本文介绍了Augraphy,这是一个旨在用于文档图像的现实数据增强策略的Python软件包。Augraphy使用许多不同的增强策略来产生增强版本的干净文档图像,这些图像似乎已经从标准的办公室操作中扭曲了,例如打印,扫描和传真通过旧机器或肮脏的机器,随着时间的推移降解,以及手写的标记。Augraphy既可以用作(1)为文档De-Noinging等任务生成多样化的培训数据的数据增强工具,以及(2)生成具有挑战性的测试数据,以评估文档图像建模任务上的模型鲁棒性。本文概述了Augraphy,并提供了三个示例稳健性测试AUGRAPHY的用例。
translated by 谷歌翻译
在过去的十年中,对对话系统的兴趣已经大大增长。从扩展过程中,也有兴趣开发和改进意图分类和插槽填充模型,这是两个组件,这些组件通常在以任务为导向的对话框系统中使用。此外,良好的评估基准对于帮助比较和分析结合此类模型的系统很重要。不幸的是,该领域的许多文献仅限于对相对较少的基准数据集的分析。为了促进针对任务的对话系统的更强大的分析,我们对意图分类和插槽填充任务进行了公开可用数据集的调查。我们分类每个数据集的重要特征,并就每个数据集的适用性,优势和劣势进行讨论。我们的目标是,这项调查有助于提高这些数据集的可访问性,我们希望它们能够在未来评估意图分类和填充插槽模型中用于以任务为导向的对话框系统。
translated by 谷歌翻译
对话系统必须能够随着时间的推移通过更新来纳入新技能,以反映新的用例或部署方案。同样,此类ML驱动系统的开发人员需要能够在已经存在的数据集中添加新的培训数据,以支持这些新技能。在意图分类系统中,如果培训数据的新技能意图与已经存在的意图重叠,则可能会出现问题。我们称此类案件发生冲突。本文介绍了多个数据集之间意图碰撞检测的任务,以提高系统的技能。我们介绍了几种检测碰撞的方法,并评估我们在展示碰撞的真实数据集上的方法。为了强调对意图碰撞检测的需求,我们表明,如果添加新数据,则模型性能会受到影响。最后,我们使用碰撞检测来构建和基准一个新的数据集Redwood,该数据集由13个原始意图分类数据集中的451个Nentent类别组成,使其成为最大的公开可用意图分类基准。
translated by 谷歌翻译
Diversity Searcher is a tool originally developed to help analyse diversity in news media texts. It relies on a form of automated content analysis and thus rests on prior assumptions and depends on certain design choices related to diversity and fairness. One such design choice is the external knowledge source(s) used. In this article, we discuss implications that these sources can have on the results of content analysis. We compare two data sources that Diversity Searcher has worked with - DBpedia and Wikidata - with respect to their ontological coverage and diversity, and describe implications for the resulting analyses of text corpora. We describe a case study of the relative over- or under-representation of Belgian political parties between 1990 and 2020 in the English-language DBpedia, the Dutch-language DBpedia, and Wikidata, and highlight the many decisions needed with regard to the design of this data analysis and the assumptions behind it, as well as implications from the results. In particular, we came across a staggering over-representation of the political right in the English-language DBpedia.
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
Kernel machines have sustained continuous progress in the field of quantum chemistry. In particular, they have proven to be successful in the low-data regime of force field reconstruction. This is because many physical invariances and symmetries can be incorporated into the kernel function to compensate for much larger datasets. So far, the scalability of this approach has however been hindered by its cubical runtime in the number of training points. While it is known, that iterative Krylov subspace solvers can overcome these burdens, they crucially rely on effective preconditioners, which are elusive in practice. Practical preconditioners need to be computationally efficient and numerically robust at the same time. Here, we consider the broad class of Nystr\"om-type methods to construct preconditioners based on successively more sophisticated low-rank approximations of the original kernel matrix, each of which provides a different set of computational trade-offs. All considered methods estimate the relevant subspace spanned by the kernel matrix columns using different strategies to identify a representative set of inducing points. Our comprehensive study covers the full spectrum of approaches, starting from naive random sampling to leverage score estimates and incomplete Cholesky factorizations, up to exact SVD decompositions.
translated by 谷歌翻译
We present an automatic method for annotating images of indoor scenes with the CAD models of the objects by relying on RGB-D scans. Through a visual evaluation by 3D experts, we show that our method retrieves annotations that are at least as accurate as manual annotations, and can thus be used as ground truth without the burden of manually annotating 3D data. We do this using an analysis-by-synthesis approach, which compares renderings of the CAD models with the captured scene. We introduce a 'cloning procedure' that identifies objects that have the same geometry, to annotate these objects with the same CAD models. This allows us to obtain complete annotations for the ScanNet dataset and the recent ARKitScenes dataset.
translated by 谷歌翻译
Objective: Imbalances of the electrolyte concentration levels in the body can lead to catastrophic consequences, but accurate and accessible measurements could improve patient outcomes. While blood tests provide accurate measurements, they are invasive and the laboratory analysis can be slow or inaccessible. In contrast, an electrocardiogram (ECG) is a widely adopted tool which is quick and simple to acquire. However, the problem of estimating continuous electrolyte concentrations directly from ECGs is not well-studied. We therefore investigate if regression methods can be used for accurate ECG-based prediction of electrolyte concentrations. Methods: We explore the use of deep neural networks (DNNs) for this task. We analyze the regression performance across four electrolytes, utilizing a novel dataset containing over 290000 ECGs. For improved understanding, we also study the full spectrum from continuous predictions to binary classification of extreme concentration levels. To enhance clinical usefulness, we finally extend to a probabilistic regression approach and evaluate different uncertainty estimates. Results: We find that the performance varies significantly between different electrolytes, which is clinically justified in the interplay of electrolytes and their manifestation in the ECG. We also compare the regression accuracy with that of traditional machine learning models, demonstrating superior performance of DNNs. Conclusion: Discretization can lead to good classification performance, but does not help solve the original problem of predicting continuous concentration levels. While probabilistic regression demonstrates potential practical usefulness, the uncertainty estimates are not particularly well-calibrated. Significance: Our study is a first step towards accurate and reliable ECG-based prediction of electrolyte concentration levels.
translated by 谷歌翻译
Earthquakes, fire, and floods often cause structural collapses of buildings. The inspection of damaged buildings poses a high risk for emergency forces or is even impossible, though. We present three recent selected missions of the Robotics Task Force of the German Rescue Robotics Center, where both ground and aerial robots were used to explore destroyed buildings. We describe and reflect the missions as well as the lessons learned that have resulted from them. In order to make robots from research laboratories fit for real operations, realistic test environments were set up for outdoor and indoor use and tested in regular exercises by researchers and emergency forces. Based on this experience, the robots and their control software were significantly improved. Furthermore, top teams of researchers and first responders were formed, each with realistic assessments of the operational and practical suitability of robotic systems.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译