Large "instruction-tuned" language models (finetuned to respond to instructions) have demonstrated a remarkable ability to generalize zero-shot to new tasks. Nevertheless, they depend heavily on human-written instruction data that is limited in quantity, diversity, and creativity, therefore hindering the generality of the tuned model. We introduce Self-Instruct, a framework for improving the instruction-following capabilities of pretrained language models by bootstrapping off its own generations. Our pipeline generates instruction, input, and output samples from a language model, then prunes them before using them to finetune the original model. Applying our method to vanilla GPT3, we demonstrate a 33% absolute improvement over the original model on Super-NaturalInstructions, on par with the performance of InstructGPT_001, which is trained with private user data and human annotations. For further evaluation, we curate a set of expert-written instructions for novel tasks, and show through human evaluation that tuning GPT3 with Self-Instruct outperforms using existing public instruction datasets by a large margin, leaving only a 5% absolute gap behind InstructGPT_001. Self-Instruct provides an almost annotation-free method for aligning pre-trained language models with instructions, and we release our large synthetic dataset to facilitate future studies on instruction tuning.
translated by 谷歌翻译
在回答问题时,人类会利用跨不同模式可用的信息来综合一致,完整的思想链(COT)。在深度学习模型(例如大规模语言模型)的情况下,这个过程通常是黑匣子。最近,科学问题基准已用于诊断AI系统的多跳推理能力和解释性。但是,现有数据集无法为答案提供注释,或仅限于仅文本模式,小尺度和有限的域多样性。为此,我们介绍了科学问题答案(SQA),这是一个新的基准,由〜21k的多模式多种选择问题组成,其中包含各种科学主题和答案的注释,并提供相应的讲座和解释。我们进一步设计语言模型,以学习将讲座和解释作为思想链(COT),以模仿回答SQA问题时的多跳上推理过程。 SQA在语言模型中展示了COT的实用性,因为COT将问题的答案绩效提高了1.20%的GPT-3和3.99%的unifiedqa。我们还探索了模型的上限,以通过喂食输入中的那些来利用解释;我们观察到它将GPT-3的少量性能提高了18.96%。我们的分析进一步表明,与人类类似的语言模型受益于解释,从较少的数据中学习并仅使用40%的数据实现相同的性能。
translated by 谷歌翻译
控制语言模型生成的文本并自定义内容一直是一个长期的挑战。追求提供控制的现有提示技术是特定于任务的,缺乏普遍性。这为非专家用户提供了压倒性的选择,可以找到适合其任务的方法。与这些技术相关的努力,例如在写作示例,解释,说明等。进一步限制了它们在非专家用户中的采用。在本文中,我们提出了一个简单的提示策略,可以帮助我思考我们在哪里鼓励GPT3通过提出一组相关问题并利用用户答案执行任务来帮助非专家用户。我们证明了我们的技术的功效,可以帮助我考虑各种任务。具体来说,我们专注于对普通人类很难的任务,需要进行重大思维才能执行。我们希望我们的工作将鼓励发展非常规的方式来利用大语模型的力量。
translated by 谷歌翻译
表问题回答(TQA)是一项重要但不足的任务。大多数现有的QA数据集都采用非结构化文本格式,只有很少的数据集使用表作为上下文。据我们所知,在生物医学领域中,没有任何TQA数据集存在经常用于提供信息的生物医学领域。在本文中,我们首先使用22个模板和关于鉴别诊断的生物医学教科书中的上下文来回答数据集Biotabqa的桌子问题。 Biotabqa不仅可以用来教授模型如何从表中回答问题,还可以评估模型如何推广到看不见的问题,这是生物医学应用的重要情况。为了实现概括评估,我们将模板分为17个培训和5个跨任务评估。然后,我们使用BioTABQA上的单个和多任务学习开发两个基准。此外,我们探索教学学习,这是一种显示出令人印象深刻的概括性能的技术。实验结果表明,我们的指导调整模型在各种评估设置中平均比单一和多任务基准平均比单一和多任务基准,更重要的是,更重要的是,指令调整的模型在交叉任务上的基准比5% 。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
Machine Translation (MT) system generally aims at automatic representation of source language into target language retaining the originality of context using various Natural Language Processing (NLP) techniques. Among various NLP methods, Statistical Machine Translation(SMT). SMT uses probabilistic and statistical techniques to analyze information and conversion. This paper canvasses about the development of bilingual SMT models for translating English to fifteen low-resource Indian Languages (ILs) and vice versa. At the outset, all 15 languages are briefed with a short description related to our experimental need. Further, a detailed analysis of Samanantar and OPUS dataset for model building, along with standard benchmark dataset (Flores-200) for fine-tuning and testing, is done as a part of our experiment. Different preprocessing approaches are proposed in this paper to handle the noise of the dataset. To create the system, MOSES open-source SMT toolkit is explored. Distance reordering is utilized with the aim to understand the rules of grammar and context-dependent adjustments through a phrase reordering categorization framework. In our experiment, the quality of the translation is evaluated using standard metrics such as BLEU, METEOR, and RIBES
translated by 谷歌翻译
The existing methods for video anomaly detection mostly utilize videos containing identifiable facial and appearance-based features. The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting. Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground. Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can overcome some of the problems posed by appearance-based features. In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos. We present a novel taxonomy of algorithms based on the various learning approaches. We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy-protecting alternative for video anomaly detection. Lastly, we identify major open research questions and provide guidelines to address them.
translated by 谷歌翻译
The advances in Artificial Intelligence are creating new opportunities to improve lives of people around the world, from business to healthcare, from lifestyle to education. For example, some systems profile the users using their demographic and behavioral characteristics to make certain domain-specific predictions. Often, such predictions impact the life of the user directly or indirectly (e.g., loan disbursement, determining insurance coverage, shortlisting applications, etc.). As a result, the concerns over such AI-enabled systems are also increasing. To address these concerns, such systems are mandated to be responsible i.e., transparent, fair, and explainable to developers and end-users. In this paper, we present ComplAI, a unique framework to enable, observe, analyze and quantify explainability, robustness, performance, fairness, and model behavior in drift scenarios, and to provide a single Trust Factor that evaluates different supervised Machine Learning models not just from their ability to make correct predictions but from overall responsibility perspective. The framework helps users to (a) connect their models and enable explanations, (b) assess and visualize different aspects of the model, such as robustness, drift susceptibility, and fairness, and (c) compare different models (from different model families or obtained through different hyperparameter settings) from an overall perspective thereby facilitating actionable recourse for improvement of the models. It is model agnostic and works with different supervised machine learning scenarios (i.e., Binary Classification, Multi-class Classification, and Regression) and frameworks. It can be seamlessly integrated with any ML life-cycle framework. Thus, this already deployed framework aims to unify critical aspects of Responsible AI systems for regulating the development process of such real systems.
translated by 谷歌翻译
Real-world datasets exhibit imbalances of varying types and degrees. Several techniques based on re-weighting and margin adjustment of loss are often used to enhance the performance of neural networks, particularly on minority classes. In this work, we analyze the class-imbalanced learning problem by examining the loss landscape of neural networks trained with re-weighting and margin-based techniques. Specifically, we examine the spectral density of Hessian of class-wise loss, through which we observe that the network weights converge to a saddle point in the loss landscapes of minority classes. Following this observation, we also find that optimization methods designed to escape from saddle points can be effectively used to improve generalization on minority classes. We further theoretically and empirically demonstrate that Sharpness-Aware Minimization (SAM), a recent technique that encourages convergence to a flat minima, can be effectively used to escape saddle points for minority classes. Using SAM results in a 6.2\% increase in accuracy on the minority classes over the state-of-the-art Vector Scaling Loss, leading to an overall average increase of 4\% across imbalanced datasets. The code is available at: https://github.com/val-iisc/Saddle-LongTail.
translated by 谷歌翻译
People living with dementia often exhibit behavioural and psychological symptoms of dementia that can put their and others' safety at risk. Existing video surveillance systems in long-term care facilities can be used to monitor such behaviours of risk to alert the staff to prevent potential injuries or death in some cases. However, these behaviours of risk events are heterogeneous and infrequent in comparison to normal events. Moreover, analyzing raw videos can also raise privacy concerns. In this paper, we present two novel privacy-protecting video-based anomaly detection approaches to detect behaviours of risks in people with dementia. We either extracted body pose information as skeletons and use semantic segmentation masks to replace multiple humans in the scene with their semantic boundaries. Our work differs from most existing approaches for video anomaly detection that focus on appearance-based features, which can put the privacy of a person at risk and is also susceptible to pixel-based noise, including illumination and viewing direction. We used anonymized videos of normal activities to train customized spatio-temporal convolutional autoencoders and identify behaviours of risk as anomalies. We show our results on a real-world study conducted in a dementia care unit with patients with dementia, containing approximately 21 hours of normal activities data for training and 9 hours of data containing normal and behaviours of risk events for testing. We compared our approaches with the original RGB videos and obtained an equivalent area under the receiver operating characteristic curve performance of 0.807 for the skeleton-based approach and 0.823 for the segmentation mask-based approach. This is one of the first studies to incorporate privacy for the detection of behaviours of risks in people with dementia.
translated by 谷歌翻译