肿瘤浸润淋巴细胞(TIL)的定量已被证明是乳腺癌患者预后的独立预测因子。通常,病理学家对含有tils的基质区域的比例进行估计,以获得TILS评分。乳腺癌(Tiger)挑战中肿瘤浸润淋巴细胞旨在评估计算机生成的TILS评分的预后意义,以预测作为COX比例风险模型的一部分的存活率。在这一挑战中,作为Tiager团队,我们已经开发了一种算法,以将肿瘤与基质与基质进行第一部分,然后将肿瘤散装区域用于TILS检测。最后,我们使用这些输出来生成每种情况的TILS分数。在初步测试中,我们的方法达到了肿瘤 - 细胞瘤的加权骰子评分为0.791,而淋巴细胞检测的FROC得分为0.572。为了预测生存,我们的模型达到了0.719的C索引。这些结果在老虎挑战的初步测试排行榜中获得了第一名。
translated by 谷歌翻译
头部和颈部鳞状细胞癌(HNSCC)的病因涉及多种致癌物,例如酒精,烟草和人乳头瘤病毒(HPV)。由于HPV感染会影响HNSCC患者的预后,治疗和存活,因此确定这些肿瘤的HPV状态很重要。在本文中,我们提出了一个新颖的三胞胎级损耗函数和HPV状态预测的多个实例学习管道。这仅使用两个HNSCC同类群体上的常规H&E染色WSI,在HPV检测中实现了新的最新性能。此外,还进行了全面的肿瘤微环境分析,从基因组,免​​疫学和细胞角度来看,HPV +/- HNSCC之间的独特模式。鉴定了与巨噬细胞和结缔细胞(例如成纤维细胞)(例如,成纤维细胞)(例如,成纤维细胞)与T细胞不同亚型(例如T细胞,CD8+ T细胞)的正类型的正相关性,这与临床发现一致。还针对HPV感染状态鉴定了独特的基因表达谱,并且与现有发现一致。
translated by 谷歌翻译
口腔上皮发育不良(OED)是对口腔的病变给出的恶性肿瘤性组织病理学诊断。预测OED等级或情况是否将转型给恶性肿瘤对于早期检测和适当的治疗至关重要。 OED通常从上皮的下三分之一开始,然后以等级的严重程度向上逐步开始,因此我们提出了分割上皮层,除了单独的细胞核之外,还可以使研究人员能够评估级别/恶性预测的重要层种形态特征。我们呈现悬停网+,深度学习框架,以同时分段(和分类)核和(内部)在H&E染色的载玻片中的核和(内)上皮层。所提出的架构由编码器分支和四个解码器分支组成,用于同时对上皮层的核和语义分割的同时分段。我们表明,拟议的模型在两个任务中实现了最先进的(SOTA)性能,而与每个任务的先前的SOTA方法相比,没有额外的成本。据我们所知,我们的是同时核实例分割和语义组织分割的第一种方法,具有用于其他类似同时任务的计算病理和对恶性预测的研究。
translated by 谷歌翻译
Manual prescription of the field of view (FOV) by MRI technologists is variable and prolongs the scanning process. Often, the FOV is too large or crops critical anatomy. We propose a deep-learning framework, trained by radiologists' supervision, for automating FOV prescription. An intra-stack shared feature extraction network and an attention network are used to process a stack of 2D image inputs to generate output scalars defining the location of a rectangular region of interest (ROI). The attention mechanism is used to make the model focus on the small number of informative slices in a stack. Then the smallest FOV that makes the neural network predicted ROI free of aliasing is calculated by an algebraic operation derived from MR sampling theory. We retrospectively collected 595 cases between February 2018 and February 2022. The framework's performance is examined quantitatively with intersection over union (IoU) and pixel error on position, and qualitatively with a reader study. We use the t-test for comparing quantitative results from all models and a radiologist. The proposed model achieves an average IoU of 0.867 and average ROI position error of 9.06 out of 512 pixels on 80 test cases, significantly better (P<0.05) than two baseline models and not significantly different from a radiologist (P>0.12). Finally, the FOV given by the proposed framework achieves an acceptance rate of 92% from an experienced radiologist.
translated by 谷歌翻译
在视频中,人类的行为是三维(3D)信号。这些视频研究了人类行为的时空知识。使用3D卷积神经网络(CNN)研究了有希望的能力。 3D CNN尚未在静止照片中为其建立良好的二维(2D)等效物获得高输出。董事会3D卷积记忆和时空融合面部训练难以防止3D CNN完成非凡的评估。在本文中,我们实施了混合深度学习体系结构,该体系结构结合了Stip和3D CNN功能,以有效地增强3D视频的性能。实施后,在每个时空融合圈中进行训练的较详细和更深的图表。训练模型在处理模型的复杂评估后进一步增强了结果。视频分类模型在此实现模型中使用。引入了使用深度学习的多媒体数据分类的智能3D网络协议,以进一步了解人类努力中的时空关联。在实施结果时,著名的数据集(即UCF101)评估了提出的混合技术的性能。结果击败了提出的混合技术,该混合动力技术基本上超过了最初的3D CNN。将结果与文献的最新框架进行比较,以识别UCF101的行动识别,准确度为95%。
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
疟疾,一种致命但可治愈的疾病每年索赔数十万人生命。早期和正确的诊断对于避免健康复杂性至关重要,但这取决于昂贵的显微镜和培训专家分析血液涂抹幻灯片的可用性。基于深度学习的方法可能不仅可以降低专家的负担,而且还提高了低成本显微镜的诊断准确性。但是,由于没有合理的大小数据集,这是阻碍的。最具挑战性的方面之一是专家不愿意在低成本显微镜下以低放大率注释数据集。我们提出了一种数据集,以进一步研究低放大率低成本显微镜的疟疾显微镜。我们的大型数据集由来自几种疟疾感染患者的血液涂抹幻灯片的图像组成,通过显微镜在两种不同的成本谱和多个放大倍数中收集。用于在高放大率下通过高成本显微镜收集的图像的定位和寿命分类任务的疟原虫细胞。我们设计了一种机制,将这些注释从高倍率从高倍率转移到低成本显微镜,多倍放大。多个对象探测器和域适配方法作为基准。此外,引入了部分监督的域适配方法以使对象检测器适应从低成本显微镜收集的图像上的工作。该数据集将在发布后公开可用。
translated by 谷歌翻译
在本文中,我们介绍了基于稀疏学习的端到端生成的对抗网络(GAN),用于单幅图像盲运动去纹理,我们称为SL-Corpygan。在盲运运动去纹理中的第一次,我们提出了一种稀疏的Reset-块作为基于HTM(分层时间内存)的稀疏卷积层和可训练的空间池K-Winner的组合,以替换RESET中的非线性等非线性-Block的SL-Corpergan发电机。此外,与许多最先进的GaN的运动脱孔方法不同,将运动脱棕色作为线性端到端过程,我们从CompyGan的域名翻译能力中获取灵感,我们展示图像去孔可以是循环一致的,同时实现最佳定性结果。最后,我们在定性和定量上对流行的图像基准进行了广泛的实验,并在GoPro数据集上实现了38.087 dB的记录分布PSNR,比最新的去纹理方法优于5.377 dB。
translated by 谷歌翻译
Brac大学(Bracu)参与了大学罗佛挑战(URC),这是由Mars社会组织的大学级学生的机器人竞赛,以设计和建造一个将用于火星早期探险家的流动站。Bracu已经设计和开发了一个全功能的下一代火星罗孚,蒙古托伊,可以在星球火星的极端敌对状态下运行。不仅拥有自主和手动控制功能的蒙古Tori,它还能够进行科学任务,以确定火星环境中的土壤和风化的特点。
translated by 谷歌翻译
Existing automated techniques for software documentation typically attempt to reason between two main sources of information: code and natural language. However, this reasoning process is often complicated by the lexical gap between more abstract natural language and more structured programming languages. One potential bridge for this gap is the Graphical User Interface (GUI), as GUIs inherently encode salient information about underlying program functionality into rich, pixel-based data representations. This paper offers one of the first comprehensive empirical investigations into the connection between GUIs and functional, natural language descriptions of software. First, we collect, analyze, and open source a large dataset of functional GUI descriptions consisting of 45,998 descriptions for 10,204 screenshots from popular Android applications. The descriptions were obtained from human labelers and underwent several quality control mechanisms. To gain insight into the representational potential of GUIs, we investigate the ability of four Neural Image Captioning models to predict natural language descriptions of varying granularity when provided a screenshot as input. We evaluate these models quantitatively, using common machine translation metrics, and qualitatively through a large-scale user study. Finally, we offer learned lessons and a discussion of the potential shown by multimodal models to enhance future techniques for automated software documentation.
translated by 谷歌翻译