在Mediaeval第一次提供视觉情绪分析任务。任务的主要目的是预测对社交媒体共享的自然灾害图像的情绪反应。与灾害相关的图像通常很复杂,并且经常唤起情绪反应,使其成为视觉情绪分析的理想用例。我们认为能够对自然灾害有关的数据进行有意义的分析可能具有很大的社会重要性,这方面的共同努力可以为未来的研究开辟几个有趣的方向。该任务由三个子任务组成,每个任务旨在探索挑战的不同方面。在本文中,我们提供了任务的详细概述,任务的一般动机,以及数据集的概述以及用于评估所提出的解决方案的指标。
translated by 谷歌翻译
在社交媒体中发现进攻性语言是社交媒体面临的主要挑战之一。研究人员提出了许多高级方法来完成这项任务。在本报告中,我们尝试利用他们的方法中的学习,并结合我们的想法以改进它们。我们在对进攻推文分类中成功实现了74%的准确性。我们还列出了社交媒体界的滥用内容检测中的即将到来的挑战。
translated by 谷歌翻译
小型模块化反应堆的概念改变了解决未来能源危机的前景。考虑到其较低的投资要求,模块化,设计简单性和增强的安全功能,这种新的反应堆技术非常有希望。人工智能驱动的多尺度建模(中子,热液压,燃料性能等)在小型模块化反应堆的研究中纳入了数字双胞胎和相关的不确定性。在这项工作中,进行了一项关于耐亡燃料的多尺度建模的全面研究。探索了这些燃料在轻水的小型模块化反应堆中的应用。本章还重点介绍了机器学习和人工智能在设计优化,控制和监视小型模块反应器中的应用。最后,简要评估了有关人工智能在高燃烧复合事故耐受燃料的发展中的研究差距。还讨论了实现这些差距的必要行动。
translated by 谷歌翻译
Wind power forecasting helps with the planning for the power systems by contributing to having a higher level of certainty in decision-making. Due to the randomness inherent to meteorological events (e.g., wind speeds), making highly accurate long-term predictions for wind power can be extremely difficult. One approach to remedy this challenge is to utilize weather information from multiple points across a geographical grid to obtain a holistic view of the wind patterns, along with temporal information from the previous power outputs of the wind farms. Our proposed CNN-RNN architecture combines convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract spatial and temporal information from multi-dimensional input data to make day-ahead predictions. In this regard, our method incorporates an ultra-wide learning view, combining data from multiple numerical weather prediction models, wind farms, and geographical locations. Additionally, we experiment with global forecasting approaches to understand the impact of training the same model over the datasets obtained from multiple different wind farms, and we employ a method where spatial information extracted from convolutional layers is passed to a tree ensemble (e.g., Light Gradient Boosting Machine (LGBM)) instead of fully connected layers. The results show that our proposed CNN-RNN architecture outperforms other models such as LGBM, Extra Tree regressor and linear regression when trained globally, but fails to replicate such performance when trained individually on each farm. We also observe that passing the spatial information from CNN to LGBM improves its performance, providing further evidence of CNN's spatial feature extraction capabilities.
translated by 谷歌翻译
Bipedal robots have received much attention because of the variety of motion maneuvers that they can produce, and the many applications they have in various areas including rehabilitation. One of these motion maneuvers is walking. In this study, we presented a framework for the trajectory optimization of a 5-link (planar) Biped Robot using hybrid optimization. The walking is modeled with two phases of single-stance (support) phase and the collision phase. The dynamic equations of the robot in each phase are extracted by the Lagrange method. It is assumed that the robot heel strike to the ground is full plastic. The gait is optimized with a method called hybrid optimization. The objective function of this problem is considered to be the integral of torque-squared along the trajectory, and also various constraints such as zero dynamics are satisfied without any approximation. Furthermore, in a new framework, there is presented a constraint called impact invariance, which ensures the periodicity of the time-varying trajectories. On the other hand, other constraints provide better and more human-like movement.
translated by 谷歌翻译
The importance of humanoid robots in today's world is undeniable, one of the most important features of humanoid robots is the ability to maneuver in environments such as stairs that other robots can not easily cross. A suitable algorithm to generate the path for the bipedal robot to climb is very important. In this paper, an optimization-based method to generate an optimal stairway for under-actuated bipedal robots without an ankle actuator is presented. The generated paths are based on zero and non-zero dynamics of the problem, and according to the satisfaction of the zero dynamics constraint in the problem, tracking the path is possible, in other words, the problem can be dynamically feasible. The optimization method used in the problem is a gradient-based method that has a suitable number of function evaluations for computational processing. This method can also be utilized to go down the stairs.
translated by 谷歌翻译
Finding and localizing the conceptual changes in two scenes in terms of the presence or removal of objects in two images belonging to the same scene at different times in special care applications is of great significance. This is mainly due to the fact that addition or removal of important objects for some environments can be harmful. As a result, there is a need to design a program that locates these differences using machine vision. The most important challenge of this problem is the change in lighting conditions and the presence of shadows in the scene. Therefore, the proposed methods must be resistant to these challenges. In this article, a method based on deep convolutional neural networks using transfer learning is introduced, which is trained with an intelligent data synthesis process. The results of this method are tested and presented on the dataset provided for this purpose. It is shown that the presented method is more efficient than other methods and can be used in a variety of real industrial environments.
translated by 谷歌翻译
Vehicle-to-Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non-line-of-sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, we proposed a Context-Aware Target Classification (CA-TC) module coupled with a hybrid learning-based predictive modeling technique for CVS systems. The CA-TC consists of two modules: A Context-Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA-TC, making them more robust and reliable. The CAM leverages vehicles path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real-world data, we learn a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior. We combine offline training and online model updates with on-the-fly forecasting to account for new possible driver behaviors. Finally, our framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.
translated by 谷歌翻译
This paper proposes a perception and path planning pipeline for autonomous racing in an unknown bounded course. The pipeline was initially created for the 2021 evGrandPrix autonomous division and was further improved for the 2022 event, both of which resulting in first place finishes. Using a simple LiDAR-based perception pipeline feeding into an occupancy grid based expansion algorithm, we determine a goal point to drive. This pipeline successfully achieved reliable and consistent laps in addition with occupancy grid algorithm to know the ways around a cone-defined track with an averaging speeds of 6.85 m/s over a distance 434.2 meters for a total lap time of 63.4 seconds.
translated by 谷歌翻译
Convolutional Neural Networks (CNN) have shown promising results for displacement estimation in UltraSound Elastography (USE). Many modifications have been proposed to improve the displacement estimation of CNNs for USE in the axial direction. However, the lateral strain, which is essential in several downstream tasks such as the inverse problem of elasticity imaging, remains a challenge. The lateral strain estimation is complicated since the motion and the sampling frequency in this direction are substantially lower than the axial one, and a lack of carrier signal in this direction. In computer vision applications, the axial and the lateral motions are independent. In contrast, the tissue motion pattern in USE is governed by laws of physics which link the axial and lateral displacements. In this paper, inspired by Hooke's law, we first propose Physically Inspired ConsTraint for Unsupervised Regularized Elastography (PICTURE), where we impose a constraint on the Effective Poisson's ratio (EPR) to improve the lateral strain estimation. In the next step, we propose self-supervised PICTURE (sPICTURE) to further enhance the strain image estimation. Extensive experiments on simulation, experimental phantom and in vivo data demonstrate that the proposed methods estimate accurate axial and lateral strain maps.
translated by 谷歌翻译