预测学生的学习成绩是教育数据挖掘(EDM)的关键任务之一。传统上,这种模型的高预测质量被认为至关重要。最近,公平和歧视W.R.T.受保护的属性(例如性别或种族)引起了人们的关注。尽管EDM中有几种公平感知的学习方法,但对这些措施的比较评估仍然缺失。在本文中,我们评估了各种教育数据集和公平感知学习模型上学生绩效预测问题的不同群体公平措施。我们的研究表明,公平度量的选择很重要,对于选择等级阈值的选择同样。
translated by 谷歌翻译
小组工作是在教育环境中的一项普遍活动,在该活动中,学生通常会根据他们的偏好将学生分为特定于主题的小组。小组应尽可能地反映学生的愿望。通常,由于研究表明学生在多样化的群体中的学习可能会更好,因此最终的群体也应根据性别或种族等受保护的属性进行平衡。此外,平衡小组红衣主义也是整个小组公平工作负载分配的重要要求。在本文中,我们介绍了多面能力(MFC)分组问题,该问题将学生公平地分配给非重叠的小组,同时确保平衡的组红衣(具有下限和上限),并最大程度地利用成员的多样性。受保护的属性。我们提出了两种方法:一种启发式方法和一种基于背包的方法来获得MFC分组。真实数据集和半合成数据集的实验表明,我们提出的方法可以很好地满足学生的偏好,并分别提供有关基数和受保护属性的平衡和多样化的群体。
translated by 谷歌翻译
由于决策越来越依赖机器学习和(大)数据,数据驱动AI系统的公平问题正在接受研究和行业的增加。已经提出了各种公平知识的机器学习解决方案,该解决方案提出了数据,学习算法和/或模型输出中的公平相关的干预措施。然而,提出新方法的重要组成部分正在经验上对其进行验证在代表现实和不同的设置的基准数据集上。因此,在本文中,我们概述了用于公平知识机器学习的真实数据集。我们专注于表格数据作为公平感知机器学习的最常见的数据表示。我们通过识别不同属性之间的关系,特别是w.r.t.来开始分析。受保护的属性和类属性,使用贝叶斯网络。为了更深入地了解数据集中的偏见和公平性,我们调查使用探索性分析的有趣关系。
translated by 谷歌翻译
Semi-supervised object detection is important for 3D scene understanding because obtaining large-scale 3D bounding box annotations on point clouds is time-consuming and labor-intensive. Existing semi-supervised methods usually employ teacher-student knowledge distillation together with an augmentation strategy to leverage unlabeled point clouds. However, these methods adopt global augmentation with scene-level transformations and hence are sub-optimal for instance-level object detection. In this work, we propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection. In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds, making the augmented data more useful for object detector training. Extensive experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods under various experimental settings. The source code will be available at https://github.com/nomiaro/OPA.
translated by 谷歌翻译
Anticipating future actions based on video observations is an important task in video understanding, which would be useful for some precautionary systems that require response time to react before an event occurs. Since the input in action anticipation is only pre-action frames, models do not have enough information about the target action; moreover, similar pre-action frames may lead to different futures. Consequently, any solution using existing action recognition models can only be suboptimal. Recently, researchers have proposed using a longer video context to remedy the insufficient information in pre-action intervals, as well as the self-attention to query past relevant moments to address the anticipation problem. However, the indirect use of video input features as the query might be inefficient, as it only serves as the proxy to the anticipation goal. To this end, we propose an inductive attention model, which transparently uses prior prediction as the query to derive the anticipation result by induction from past experience. Our method naturally considers the uncertainty of multiple futures via the many-to-many association. On the large-scale egocentric video datasets, our model not only shows consistently better performance than state of the art using the same backbone, and is competitive to the methods that employ a stronger backbone, but also superior efficiency in less model parameters.
translated by 谷歌翻译
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations. Recent advances accomplish this task by leveraging clustering-based pseudo labels, but these pseudo labels are inevitably noisy which deteriorate model performance. In this paper, we propose a Neighbour Consistency guided Pseudo Label Refinement (NCPLR) framework, which can be regarded as a transductive form of label propagation under the assumption that the prediction of each example should be similar to its nearest neighbours'. Specifically, the refined label for each training instance can be obtained by the original clustering result and a weighted ensemble of its neighbours' predictions, with weights determined according to their similarities in the feature space. In addition, we consider the clustering-based unsupervised person ReID as a label-noise learning problem. Then, we proposed an explicit neighbour consistency regularization to reduce model susceptibility to over-fitting while improving the training stability. The NCPLR method is simple yet effective, and can be seamlessly integrated into existing clustering-based unsupervised algorithms. Extensive experimental results on five ReID datasets demonstrate the effectiveness of the proposed method, and showing superior performance to state-of-the-art methods by a large margin.
translated by 谷歌翻译
Fake videos represent an important misinformation threat. While existing forensic networks have demonstrated strong performance on image forgeries, recent results reported on the Adobe VideoSham dataset show that these networks fail to identify fake content in videos. In this paper, we propose a new network that is able to detect and localize a wide variety of video forgeries and manipulations. To overcome challenges that existing networks face when analyzing videos, our network utilizes both forensic embeddings to capture traces left by manipulation, context embeddings to exploit forensic traces' conditional dependencies upon local scene content, and spatial attention provided by a deep, transformer-based attention mechanism. We create several new video forgery datasets and use these, along with publicly available data, to experimentally evaluate our network's performance. These results show that our proposed network is able to identify a diverse set of video forgeries, including those not encountered during training. Furthermore, our results reinforce recent findings that image forensic networks largely fail to identify fake content in videos.
translated by 谷歌翻译
We propose LiDAL, a novel active learning method for 3D LiDAR semantic segmentation by exploiting inter-frame uncertainty among LiDAR frames. Our core idea is that a well-trained model should generate robust results irrespective of viewpoints for scene scanning and thus the inconsistencies in model predictions across frames provide a very reliable measure of uncertainty for active sample selection. To implement this uncertainty measure, we introduce new inter-frame divergence and entropy formulations, which serve as the metrics for active selection. Moreover, we demonstrate additional performance gains by predicting and incorporating pseudo-labels, which are also selected using the proposed inter-frame uncertainty measure. Experimental results validate the effectiveness of LiDAL: we achieve 95% of the performance of fully supervised learning with less than 5% of annotations on the SemanticKITTI and nuScenes datasets, outperforming state-of-the-art active learning methods. Code release: https://github.com/hzykent/LiDAL.
translated by 谷歌翻译
Breast cancer is the second most common type of cancer in women in Canada and the United States, representing over 25% of all new female cancer cases. Neoadjuvant chemotherapy treatment has recently risen in usage as it may result in a patient having a pathologic complete response (pCR), and it can shrink inoperable breast cancer tumors prior to surgery so that the tumor becomes operable, but it is difficult to predict a patient's pathologic response to neoadjuvant chemotherapy. In this paper, we investigate the efficacy of leveraging learnt volumetric deep features from a newly introduced magnetic resonance imaging (MRI) modality called synthetic correlated diffusion imaging (CDI$^s$) for the purpose of pCR prediction. More specifically, we leverage a volumetric convolutional neural network to learn volumetric deep radiomic features from a pre-treatment cohort and construct a predictor based on the learnt features using the post-treatment response. As the first study to explore the utility of CDI$^s$ within a deep learning perspective for clinical decision support, we evaluated the proposed approach using the ACRIN-6698 study against those learnt using gold-standard imaging modalities, and found that the proposed approach can provide enhanced pCR prediction performance and thus may be a useful tool to aid oncologists in improving recommendation of treatment of patients. Subsequently, this approach to leverage volumetric deep radiomic features (which we name Cancer-Net BCa) can be further extended to other applications of CDI$^s$ in the cancer domain to further improve prediction performance.
translated by 谷歌翻译
Improving model's generalizability against domain shifts is crucial, especially for safety-critical applications such as autonomous driving. Real-world domain styles can vary substantially due to environment changes and sensor noises, but deep models only know the training domain style. Such domain style gap impedes model generalization on diverse real-world domains. Our proposed Normalization Perturbation (NP) can effectively overcome this domain style overfitting problem. We observe that this problem is mainly caused by the biased distribution of low-level features learned in shallow CNN layers. Thus, we propose to perturb the channel statistics of source domain features to synthesize various latent styles, so that the trained deep model can perceive diverse potential domains and generalizes well even without observations of target domain data in training. We further explore the style-sensitive channels for effective style synthesis. Normalization Perturbation only relies on a single source domain and is surprisingly effective and extremely easy to implement. Extensive experiments verify the effectiveness of our method for generalizing models under real-world domain shifts.
translated by 谷歌翻译