我们呈现圆圈,基于本地隐式符号距离函数的大规模场景完成和几何精致的框架。它基于端到端的稀疏卷积网络,Circnet,共同模拟局部几何细节和全局场景结构背景,使其能够在传统3D场景数据中恢复通常产生的缺失区域的同时保留细粒度的对象细节。一种新颖的可分解渲染模块,可以进行测试时间精制以获得更好的重建质量。对现实世界和合成数据集的广泛实验表明,我们的简明框架是高效且有效的,实现比最接近竞争对手更好的重建质量,同时速度更快。
translated by 谷歌翻译
人类自然有效地在复杂的场景中找到突出区域。通过这种观察的动机,引入了计算机视觉中的注意力机制,目的是模仿人类视觉系统的这一方面。这种注意机制可以基于输入图像的特征被视为动态权重调整过程。注意机制在许多视觉任务中取得了巨大的成功,包括图像分类,对象检测,语义分割,视频理解,图像生成,3D视觉,多模态任务和自我监督的学习。在本调查中,我们对计算机愿景中的各种关注机制进行了全面的审查,并根据渠道注意,空间关注,暂时关注和分支注意力进行分类。相关的存储库https://github.com/menghaoguo/awesome-vision-tions致力于收集相关的工作。我们还建议了未来的注意机制研究方向。
translated by 谷歌翻译
卷积神经网络(CNNS)在2D计算机视觉中取得了很大的突破。然而,它们的不规则结构使得难以在网格上直接利用CNNS的潜力。细分表面提供分层多分辨率结构,其中闭合的2 - 歧管三角网格中的每个面正恰好邻近三个面。本文推出了这两种观察,介绍了具有环形细分序列连接的3D三角形网格的创新和多功能CNN框架。在2D图像中的网格面和像素之间进行类比允许我们呈现网状卷积操作者以聚合附近面的局部特征。通过利用面部街区,这种卷积可以支持标准的2D卷积网络概念,例如,可变内核大小,步幅和扩张。基于多分辨率层次结构,我们利用汇集层,将四个面均匀地合并成一个和上采样方法,该方法将一个面分为四个。因此,许多流行的2D CNN架构可以容易地适应处理3D网格。可以通过自我参数化来回收具有任意连接的网格,以使循环细分序列连接,使子变量是一般的方法。广泛的评估和各种应用展示了SubDIVNet的有效性和效率。
translated by 谷歌翻译
The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing. This paper presents a novel framework named Point Cloud Transformer(PCT) for point cloud learning. PCT is based on Transformer, which achieves huge success in natural language processing and displays great potential in image processing. It is inherently permutation invariant for processing a sequence of points, making it well-suited for point cloud learning. To better capture local context within the point cloud, we enhance input embedding with the support of farthest point sampling and nearest neighbor search. Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification, part segmentation, semantic segmentation and normal estimation tasks.
translated by 谷歌翻译
The ability to jointly learn from multiple modalities, such as text, audio, and visual data, is a defining feature of intelligent systems. While there have been promising advances in designing neural networks to harness multimodal data, the enormous success of data augmentation currently remains limited to single-modality tasks like image classification. Indeed, it is particularly difficult to augment each modality while preserving the overall semantic structure of the data; for example, a caption may no longer be a good description of an image after standard augmentations have been applied, such as translation. Moreover, it is challenging to specify reasonable transformations that are not tailored to a particular modality. In this paper, we introduce LeMDA, Learning Multimodal Data Augmentation, an easy-to-use method that automatically learns to jointly augment multimodal data in feature space, with no constraints on the identities of the modalities or the relationship between modalities. We show that LeMDA can (1) profoundly improve the performance of multimodal deep learning architectures, (2) apply to combinations of modalities that have not been previously considered, and (3) achieve state-of-the-art results on a wide range of applications comprised of image, text, and tabular data.
translated by 谷歌翻译
The current optical communication systems minimize bit or symbol errors without considering the semantic meaning behind digital bits, thus transmitting a lot of unnecessary information. We propose and experimentally demonstrate a semantic optical fiber communication (SOFC) system. Instead of encoding information into bits for transmission, semantic information is extracted from the source using deep learning. The generated semantic symbols are then directly transmitted through an optical fiber. Compared with the bit-based structure, the SOFC system achieved higher information compression and a more stable performance, especially in the low received optical power regime, and enhanced the robustness against optical link impairments. This work introduces an intelligent optical communication system at the human analytical thinking level, which is a significant step toward a breakthrough in the current optical communication architecture.
translated by 谷歌翻译
In this paper, we study the use of deep Transformer translation model for the CCMT 2022 Chinese-Thai low-resource machine translation task. We first explore the experiment settings (including the number of BPE merge operations, dropout probability, embedding size, etc.) for the low-resource scenario with the 6-layer Transformer. Considering that increasing the number of layers also increases the regularization on new model parameters (dropout modules are also introduced when using more layers), we adopt the highest performance setting but increase the depth of the Transformer to 24 layers to obtain improved translation quality. Our work obtains the SOTA performance in the Chinese-to-Thai translation in the constrained evaluation.
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (c-MARL) is widely applied in safety-critical scenarios, thus the analysis of robustness for c-MARL models is profoundly important. However, robustness certification for c-MARLs has not yet been explored in the community. In this paper, we propose a novel certification method, which is the first work to leverage a scalable approach for c-MARLs to determine actions with guaranteed certified bounds. c-MARL certification poses two key challenges compared with single-agent systems: (i) the accumulated uncertainty as the number of agents increases; (ii) the potential lack of impact when changing the action of a single agent into a global team reward. These challenges prevent us from directly using existing algorithms. Hence, we employ the false discovery rate (FDR) controlling procedure considering the importance of each agent to certify per-state robustness and propose a tree-search-based algorithm to find a lower bound of the global reward under the minimal certified perturbation. As our method is general, it can also be applied in single-agent environments. We empirically show that our certification bounds are much tighter than state-of-the-art RL certification solutions. We also run experiments on two popular c-MARL algorithms: QMIX and VDN, in two different environments, with two and four agents. The experimental results show that our method produces meaningful guaranteed robustness for all models and environments. Our tool CertifyCMARL is available at https://github.com/TrustAI/CertifyCMA
translated by 谷歌翻译
The architecture of transformers, which recently witness booming applications in vision tasks, has pivoted against the widespread convolutional paradigm. Relying on the tokenization process that splits inputs into multiple tokens, transformers are capable of extracting their pairwise relationships using self-attention. While being the stemming building block of transformers, what makes for a good tokenizer has not been well understood in computer vision. In this work, we investigate this uncharted problem from an information trade-off perspective. In addition to unifying and understanding existing structural modifications, our derivation leads to better design strategies for vision tokenizers. The proposed Modulation across Tokens (MoTo) incorporates inter-token modeling capability through normalization. Furthermore, a regularization objective TokenProp is embraced in the standard training regime. Through extensive experiments on various transformer architectures, we observe both improved performance and intriguing properties of these two plug-and-play designs with negligible computational overhead. These observations further indicate the importance of the commonly-omitted designs of tokenizers in vision transformer.
translated by 谷歌翻译
Pre-trained large language models can efficiently interpolate human-written prompts in a natural way. Multitask prompted learning can help generalization through a diverse set of tasks at once, thus enhancing the potential for more effective downstream fine-tuning. To perform efficient multitask-inference in the same batch, parameter-efficient fine-tuning methods such as prompt tuning have been proposed. However, the existing prompt tuning methods may lack generalization. We propose SPT, a semi-parametric prompt tuning method for multitask prompted learning. The novel component of SPT is a memory bank from where memory prompts are retrieved based on discrete prompts. Extensive experiments, such as (i) fine-tuning a full language model with SPT on 31 different tasks from 8 different domains and evaluating zero-shot generalization on 9 heldout datasets under 5 NLP task categories and (ii) pretraining SPT on the GLUE datasets and evaluating fine-tuning on the SuperGLUE datasets, demonstrate effectiveness of SPT.
translated by 谷歌翻译