我们提出了一个数据收集和注释管道,该数据从越南放射学报告中提取信息,以提供胸部X射线(CXR)图像的准确标签。这可以通过注释与其特有诊断类别的数据相匹配,这些数据可能因国家而异。为了评估所提出的标签技术的功效,我们构建了一个包含9,752项研究的CXR数据集,并使用该数据集的子集评估了我们的管道。以F1得分为至少0.9923,评估表明,我们的标签工具在所有类别中都精确而始终如一。构建数据集后,我们训练深度学习模型,以利用从大型公共CXR数据集传输的知识。我们采用各种损失功能来克服不平衡的多标签数据集的诅咒,并使用各种模型体系结构进行实验,以选择提供最佳性能的诅咒。我们的最佳模型(CHEXPERT-FRECTER EDIDENENET-B2)的F1得分为0.6989(95%CI 0.6740,0.7240),AUC为0.7912,敏感性为0.7064,特异性为0.8760,普遍诊断为0.8760。最后,我们证明了我们的粗分类(基于五个特定的异常位置)在基准CHEXPERT数据集上获得了可比的结果(十二个病理),以进行一般异常检测,同时在所有类别的平均表现方面提供更好的性能。
translated by 谷歌翻译