Background and Purpose: Colorectal cancer is a common fatal malignancy, the fourth most common cancer in men, and the third most common cancer in women worldwide. Timely detection of cancer in its early stages is essential for treating the disease. Currently, there is a lack of datasets for histopathological image segmentation of rectal cancer, which often hampers the assessment accuracy when computer technology is used to aid in diagnosis. Methods: This present study provided a new publicly available Enteroscope Biopsy Histopathological Hematoxylin and Eosin Image Dataset for Image Segmentation Tasks (EBHI-Seg). To demonstrate the validity and extensiveness of EBHI-Seg, the experimental results for EBHI-Seg are evaluated using classical machine learning methods and deep learning methods. Results: The experimental results showed that deep learning methods had a better image segmentation performance when utilizing EBHI-Seg. The maximum accuracy of the Dice evaluation metric for the classical machine learning method is 0.948, while the Dice evaluation metric for the deep learning method is 0.965. Conclusion: This publicly available dataset contained 5,170 images of six types of tumor differentiation stages and the corresponding ground truth images. The dataset can provide researchers with new segmentation algorithms for medical diagnosis of colorectal cancer, which can be used in the clinical setting to help doctors and patients.
translated by 谷歌翻译
For saving cost, many deep neural networks (DNNs) are trained on third-party datasets downloaded from internet, which enables attacker to implant backdoor into DNNs. In 2D domain, inherent structures of different image formats are similar. Hence, backdoor attack designed for one image format will suite for others. However, when it comes to 3D world, there is a huge disparity among different 3D data structures. As a result, backdoor pattern designed for one certain 3D data structure will be disable for other data structures of the same 3D scene. Therefore, this paper designs a uniform backdoor pattern: NRBdoor (Noisy Rotation Backdoor) which is able to adapt for heterogeneous 3D data structures. Specifically, we start from the unit rotation and then search for the optimal pattern by noise generation and selection process. The proposed NRBdoor is natural and imperceptible, since rotation is a common operation which usually contains noise due to both the miss match between a pair of points and the sensor calibration error for real-world 3D scene. Extensive experiments on 3D mesh and point cloud show that the proposed NRBdoor achieves state-of-the-art performance, with negligible shape variation.
translated by 谷歌翻译
The mainstream workflow of image recognition applications is first training one global model on the cloud for a wide range of classes and then serving numerous clients, each with heterogeneous images from a small subset of classes to be recognized. From the cloud-client discrepancies on the range of image classes, the recognition model is desired to have strong adaptiveness, intuitively by concentrating the focus on each individual client's local dynamic class subset, while incurring negligible overhead. In this work, we propose to plug a new intra-client and inter-image attention (ICIIA) module into existing backbone recognition models, requiring only one-time cloud-based training to be client-adaptive. In particular, given a target image from a certain client, ICIIA introduces multi-head self-attention to retrieve relevant images from the client's historical unlabeled images, thereby calibrating the focus and the recognition result. Further considering that ICIIA's overhead is dominated by linear projection, we propose partitioned linear projection with feature shuffling for replacement and allow increasing the number of partitions to dramatically improve efficiency without scarifying too much accuracy. We finally evaluate ICIIA using 3 different recognition tasks with 9 backbone models over 5 representative datasets. Extensive evaluation results demonstrate the effectiveness and efficiency of ICIIA. Specifically, for ImageNet-1K with the backbone models of MobileNetV3-L and Swin-B, ICIIA can improve the testing accuracy to 83.37% (+8.11%) and 88.86% (+5.28%), while adding only 1.62% and 0.02% of FLOPs, respectively.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Improving model's generalizability against domain shifts is crucial, especially for safety-critical applications such as autonomous driving. Real-world domain styles can vary substantially due to environment changes and sensor noises, but deep models only know the training domain style. Such domain style gap impedes model generalization on diverse real-world domains. Our proposed Normalization Perturbation (NP) can effectively overcome this domain style overfitting problem. We observe that this problem is mainly caused by the biased distribution of low-level features learned in shallow CNN layers. Thus, we propose to perturb the channel statistics of source domain features to synthesize various latent styles, so that the trained deep model can perceive diverse potential domains and generalizes well even without observations of target domain data in training. We further explore the style-sensitive channels for effective style synthesis. Normalization Perturbation only relies on a single source domain and is surprisingly effective and extremely easy to implement. Extensive experiments verify the effectiveness of our method for generalizing models under real-world domain shifts.
translated by 谷歌翻译
Fact verification has attracted a lot of research attention recently, e.g., in journalism, marketing, and policymaking, as misinformation and disinformation online can sway one's opinion and affect one's actions. While fact-checking is a hard task in general, in many cases, false statements can be easily debunked based on analytics over tables with reliable information. Hence, table-based fact verification has recently emerged as an important and growing research area. Yet, progress has been limited due to the lack of datasets that can be used to pre-train language models (LMs) to be aware of common table operations, such as aggregating a column or comparing tuples. To bridge this gap, in this paper we introduce PASTA, a novel state-of-the-art framework for table-based fact verification via pre-training with synthesized sentence-table cloze questions. In particular, we design six types of common sentence-table cloze tasks, including Filter, Aggregation, Superlative, Comparative, Ordinal, and Unique, based on which we synthesize a large corpus consisting of 1.2 million sentence-table pairs from WikiTables. PASTA uses a recent pre-trained LM, DeBERTaV3, and further pretrains it on our corpus. Our experimental results show that PASTA achieves new state-of-the-art performance on two table-based fact verification benchmarks: TabFact and SEM-TAB-FACTS. In particular, on the complex set of TabFact, which contains multiple operations, PASTA largely outperforms the previous state of the art by 4.7 points (85.6% vs. 80.9%), and the gap between PASTA and human performance on the small TabFact test set is narrowed to just 1.5 points (90.6% vs. 92.1%).
translated by 谷歌翻译
大多数图形神经网络(GNN)通过学习输入图和标签之间的相关性来预测看不见的图的标签。但是,通过对具有严重偏见的训练图进行图形分类调查,我们发现GNN始终倾向于探索伪造的相关性以做出决定,即使因果关系始终存在。这意味着在此类偏见的数据集中接受培训的现有GNN将遭受概括能力差。通过在因果观点中分析此问题,我们发现从偏见图中解开和去偏置因果和偏见的潜在变量对于偏见至关重要。在此鼓舞下,我们提出了一个普遍的分解GNN框架,分别学习因果子结构和偏见子结构。特别是,我们设计了一个参数化的边蒙版生成器,以将输入图明确分为因果和偏置子图。然后,分别由因果/偏见感知损失函数监督的两个GNN模块进行培训,以编码因果关系和偏置子图表中的相应表示。通过分离的表示,我们合成了反事实无偏的训练样本,以进一步脱离因果变量和偏见变量。此外,为了更好地基于严重的偏见问题,我们构建了三个新的图形数据集,这些数据集具有可控的偏置度,并且更容易可视化和解释。实验结果很好地表明,我们的方法比现有基线实现了优越的概括性能。此外,由于学习的边缘面膜,该拟议的模型具有吸引人的解释性和可转让性。代码和数据可在以下网址获得:https://github.com/googlebaba/disc。
translated by 谷歌翻译
视觉任务的输出格式和相关内容差异很大,因此很难以相同的结构处理它们。一个主要障碍在于对象级别的视觉任务中的高维输出。在本文中,我们提出了一个以对象为中心的视觉框架OBJ2Seq。 OBJ2Seq将对象作为基本单元,并将大多数对象级的视觉任务视为对象的序列生成问题。因此,这些视觉任务可以分为两个步骤。首先识别给定类别的对象,然后为每个对象生成一个序列。输出序列的定义对于不同的任务有所不同,并且通过将这些序列与地面真相目标匹配来监督模型。 OBJ2SEQ能够灵活地确定输入类别以满足自定义要求,并可以轻松扩展到不同的视觉任务。在对MS Coco进行实验时,OBJ2SEQ在对象检测时可获得45.7%的AP,多标签分类的89.0%AP和人类姿势估计的65.0%AP。这些结果证明了其通常应用于不同视觉任务的潜力。代码已在以下网址提供:https://github.com/casia-iva-lab/obj2seq。
translated by 谷歌翻译
数字艺术合成在多媒体社区中受到越来越多的关注,因为有效地与公众参与了艺术。当前的数字艺术合成方法通常使用单模式输入作为指导,从而限制了模型的表现力和生成结果的多样性。为了解决这个问题,我们提出了多模式引导的艺术品扩散(MGAD)模型,该模型是一种基于扩散的数字艺术品生成方法,它利用多模式提示作为控制无分类器扩散模型的指导。此外,对比度语言图像预处理(剪辑)模型用于统一文本和图像模式。关于生成的数字艺术绘画质量和数量的广泛实验结果证实了扩散模型和多模式指导的组合有效性。代码可从https://github.com/haha-lisa/mgad-multimodal-guided-artwork-diffusion获得。
translated by 谷歌翻译
社会建议利用社会关系来增强建议的代表性学习。大多数社会推荐模型都将用户互动(协作领域)和社会关系(社会领域)的用户表示统一。但是,这种方法可能无法模拟用户在两个域中的异质行为模式,从而损害了用户表示的表现力。在这项工作中,为了解决这种局限性,我们为社会建议提出了一个新颖的截面对比度学习框架DCREC。更具体地说,我们建议从项目和社会域中学习分开的用户表示。此外,分离的对比度学习旨在在分散的用户表示之间进行社交建议之间的知识转移。各种现实世界数据集的全面实验证明了我们提出的模型的优势。
translated by 谷歌翻译