用于分析化学数据的计算技术的引入引起了对生物系统的分析研究,称为“生物信息学”。生物信息学的一个方面是使用机器学习(ML)技术在各种情况下检测多变量趋势。最紧迫的情况之一是预测血脑屏障(BBB)的渗透性。治疗中枢神经系统疾病的新药物的开发由于在血脑屏障中的渗透功效不佳而带来了独特的挑战。在这项研究中,我们旨在通过分析化学特征的ML模型来减轻此问题。这样做:(i)给出了相关的生物系统和过程以及用例的概述。 (ii)第二,对检测BBB渗透性的现有计算技术进行了深入的文献综述。从那里开始,确定了跨电流技术的一个方面,并提出了解决方案。 (iii)最后,开发,测试和反映了通过被动扩散在整个BBB上具有确定特征的药物渗透性的两部分,以量化具有定义特征的药物的渗透性。使用数据集进行的测试和验证确定预测LOGBB模型的平方误差约为0.112单位,而神经炎症模型的均方误差约为0.3个单位,胜过所有相关研究。
translated by 谷歌翻译
最近在体现AI中的研究已经通过使用模拟环境来开发和培训机器人学习方法。然而,使用模拟已经引起了只需要机器人模拟器可以模拟的任务:运动和物理接触的任务。我们呈现IGIBSON 2.0,一个开源仿真环境,通过三个关键创新支持模拟更多样化的家庭任务。首先,IGIBSON 2.0支持对象状态,包括温度,湿度水平,清洁度和切割和切片状态,以涵盖更广泛的任务。其次,IGIBSON 2.0实现了一组谓词逻辑函数,该逻辑函数将模拟器状态映射到烹饪或浸泡等逻辑状态。另外,给定逻辑状态,IGIBSON 2.0可以对满足它的有效物理状态进行示例。此功能可以以最少的努力从用户生成潜在的无限实例。采样机制允许我们的场景在语义有意义的位置中的小对象更密集地填充。第三,IGIBSON 2.0包括虚拟现实(VR)界面,以将人类浸入其场景以收集示威操作。因此,我们可以从这些新型任务中收集人类的示威活动,并使用它们进行模仿学习。我们评估了IGIBSON 2.0的新功能,以实现新的任务的机器人学习,希望能够展示这一新模拟器的潜力来支持体现AI的新研究。 IGIBSON 2.0及其新数据集可在http://svl.stanford.edu/igibson/上公开提供。
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
Speech systems are sensitive to accent variations. This is especially challenging in the Indian context, with an abundance of languages but a dearth of linguistic studies characterising pronunciation variations. The growing number of L2 English speakers in India reinforces the need to study accents and L1-L2 interactions. We investigate the accents of Indian English (IE) speakers and report in detail our observations, both specific and common to all regions. In particular, we observe the phonemic variations and phonotactics occurring in the speakers' native languages and apply this to their English pronunciations. We demonstrate the influence of 18 Indian languages on IE by comparing the native language pronunciations with IE pronunciations obtained jointly from existing literature studies and phonetically annotated speech of 80 speakers. Consequently, we are able to validate the intuitions of Indian language influences on IE pronunciations by justifying pronunciation rules from the perspective of Indian language phonology. We obtain a comprehensive description in terms of universal and region-specific characteristics of IE, which facilitates accent conversion and adaptation of existing ASR and TTS systems to different Indian accents.
translated by 谷歌翻译
In molecular research, simulation \& design of molecules are key areas with significant implications for drug development, material science, and other fields. Current classical computational power falls inadequate to simulate any more than small molecules, let alone protein chains on hundreds of peptide. Therefore these experiment are done physically in wet-lab, but it takes a lot of time \& not possible to examine every molecule due to the size of the search area, tens of billions of dollars are spent every year in these research experiments. Molecule simulation \& design has lately advanced significantly by machine learning models, A fresh perspective on the issue of chemical synthesis is provided by deep generative models for graph-structured data. By optimising differentiable models that produce molecular graphs directly, it is feasible to avoid costly search techniques in the discrete and huge space of chemical structures. But these models also suffer from computational limitations when dimensions become huge and consume huge amount of resources. Quantum Generative machine learning in recent years have shown some empirical results promising significant advantages over classical counterparts.
translated by 谷歌翻译
Developing and least developed countries face the dire challenge of ensuring that each child in their country receives required doses of vaccination, adequate nutrition and proper medication. International agencies such as UNICEF, WHO and WFP, among other organizations, strive to find innovative solutions to determine which child has received the benefits and which have not. Biometric recognition systems have been sought out to help solve this problem. To that end, this report establishes a baseline accuracy of a commercial contactless palmprint recognition system that may be deployed for recognizing children in the age group of one to five years old. On a database of contactless palmprint images of one thousand unique palms from 500 children, we establish SOTA authentication accuracy of 90.85% @ FAR of 0.01%, rank-1 identification accuracy of 99.0% (closed set), and FPIR=0.01 @ FNIR=0.3 for open-set identification using PalmMobile SDK from Armatura.
translated by 谷歌翻译
Selective classification involves identifying the subset of test samples that a model can classify with high accuracy, and is important for applications such as automated medical diagnosis. We argue that this capability of identifying uncertain samples is valuable for training classifiers as well, with the aim of building more accurate classifiers. We unify these dual roles by training a single auxiliary meta-network to output an importance weight as a function of the instance. This measure is used at train time to reweight training data, and at test-time to rank test instances for selective classification. A second, key component of our proposal is the meta-objective of minimizing dropout variance (the variance of classifier output when subjected to random weight dropout) for training the metanetwork. We train the classifier together with its metanetwork using a nested objective of minimizing classifier loss on training data and meta-loss on a separate meta-training dataset. We outperform current state-of-the-art on selective classification by substantial margins--for instance, upto 1.9% AUC and 2% accuracy on a real-world diabetic retinopathy dataset. Finally, our meta-learning framework extends naturally to unsupervised domain adaptation, given our unsupervised variance minimization meta-objective. We show cumulative absolute gains of 3.4% / 3.3% accuracy and AUC over the other baselines in domain shift settings on the Retinopathy dataset using unsupervised domain adaptation.
translated by 谷歌翻译
Multi-Scale and U-shaped Networks are widely used in various image restoration problems, including deblurring. Keeping in mind the wide range of applications, we present a comparison of these architectures and their effects on image deblurring. We also introduce a new block called as NFResblock. It consists of a Fast Fourier Transformation layer and a series of modified Non-Linear Activation Free Blocks. Based on these architectures and additions, we introduce NFResnet and NFResnet+, which are modified multi-scale and U-Net architectures, respectively. We also use three different loss functions to train these architectures: Charbonnier Loss, Edge Loss, and Frequency Reconstruction Loss. Extensive experiments on the Deep Video Deblurring dataset, along with ablation studies for each component, have been presented in this paper. The proposed architectures achieve a considerable increase in Peak Signal to Noise (PSNR) ratio and Structural Similarity Index (SSIM) value.
translated by 谷歌翻译
Many real-world learning scenarios face the challenge of slow concept drift, where data distributions change gradually over time. In this setting, we pose the problem of learning temporally sensitive importance weights for training data, in order to optimize predictive accuracy. We propose a class of temporal reweighting functions that can capture multiple timescales of change in the data, as well as instance-specific characteristics. We formulate a bi-level optimization criterion, and an associated meta-learning algorithm, by which these weights can be learned. In particular, our formulation trains an auxiliary network to output weights as a function of training instances, thereby compactly representing the instance weights. We validate our temporal reweighting scheme on a large real-world dataset of 39M images spread over a 9 year period. Our extensive experiments demonstrate the necessity of instance-based temporal reweighting in the dataset, and achieve significant improvements to classical batch-learning approaches. Further, our proposal easily generalizes to a streaming setting and shows significant gains compared to recent continual learning methods.
translated by 谷歌翻译
Intelligently extracting and linking complex scientific information from unstructured text is a challenging endeavor particularly for those inexperienced with natural language processing. Here, we present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction for complex hierarchical information in scientific text. The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts (inputs) and completions (outputs). Information is extracted either from single sentences or across sentences in abstracts/passages, and the output can be returned as simple English sentences or a more structured format, such as a list of JSON objects. We demonstrate that LLMs trained in this way are capable of accurately extracting useful records of complex scientific knowledge for three representative tasks in materials chemistry: linking dopants with their host materials, cataloging metal-organic frameworks, and general chemistry/phase/morphology/application information extraction. This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text. An online demo is available at http://www.matscholar.com/info-extraction.
translated by 谷歌翻译