Nowadays, copy detection patterns (CDP) appear as a very promising anti-counterfeiting technology for physical object protection. However, the advent of deep learning as a powerful attacking tool has shown that the general authentication schemes are unable to compete and fail against such attacks. In this paper, we propose a new mathematical model of printing-imaging channel for the authentication of CDP together with a new detection scheme based on it. The results show that even deep learning created copy fakes unknown at the training stage can be reliably authenticated based on the proposed approach and using only digital references of CDP during authentication.
translated by 谷歌翻译
复制检测模式(CDP)是一项有吸引力的技术,可让制造商捍卫其产品免受伪造。CDP保护机制背后的主要假设是,由于数据处理不平等,无法复制或克隆工业打印机上的最小符号大小(1x1)的代码。但是,以前的作品表明,基于机器的攻击可以产生高质量的假货,从而基于传统的基于功能的身份验证系统的身份验证准确性降低。虽然深度学习(DL)可以用作身份验证系统的一部分,但据我们所知,以前的作品都没有研究基于DL的身份验证系统,反对基于ML的攻击具有1x1符号的CDP攻击尺寸。在这项工作中,我们研究了假设有监督学习(SL)设置的表现。
translated by 谷歌翻译
本文报告了基准数据驱动的自动共鸣手势生成的第二个基因挑战。参与的团队使用相同的语音和运动数据集来构建手势生成系统。所有这些系统生成的运动都使用标准化的可视化管道将视频渲染到视频中,并在几个大型众包用户研究中进行了评估。与比较不同的研究论文不同,结果差异仅是由于方法之间的差异,从而实现了系统之间的直接比较。今年的数据集基于18个小时的全身运动捕获,包括手指,参与二元对话的不同人。十个团队参加了两层挑战:全身和上身手势。对于每个层,我们都评估了手势运动的人类风格及其对特定语音信号的适当性。我们的评估使人类的忠诚度与手势适当性解脱,这是该领域的主要挑战。评估结果是一场革命和启示。某些合成条件被评为比人类运动捕获更明显的人类样。据我们所知,这从未在高保真的头像上展示过。另一方面,发现所有合成运动比原始运动捕获记录要小得多。其他材料可通过项目网站https://youngwoo-yoon.github.io/geneachallenge2022/获得
translated by 谷歌翻译
在这项工作中,我们将神经头部的头像技术推向百万像素分辨率,同时着重于跨驾驶合成的特别挑战性的任务,即,当驾驶图像的外观与动画源图像大不相同时。我们提出了一组新的神经体系结构和训练方法,这些方法可以利用中分辨率的视频数据和高分辨率图像数据,以达到所需的渲染图像质量和对新视图和运动的概括。我们证明,建议的架构和方法产生令人信服的高分辨率神经化身,在跨驾驶场景中表现优于竞争对手。最后,我们展示了如何将受过训练的高分辨率神经化身模型蒸馏成一个轻量级的学生模型,该模型是实时运行的,并将神经化身的身份锁定到数十个预定的源图像。实时操作和身份锁对于许多实际应用头像系统至关重要。
translated by 谷歌翻译
我们介绍了一个现实的单发网眼的人体头像创作的系统,即简称罗马。使用一张照片,我们的模型估计了特定于人的头部网格和相关的神经纹理,该神经纹理编码局部光度和几何细节。最终的化身是操纵的,可以使用神经网络进行渲染,该神经网络与野外视频数据集上的网格和纹理估计器一起训练。在实验中,我们观察到我们的系统在头部几何恢复和渲染质量方面都具有竞争性的性能,尤其是对于跨人的重新制定。请参阅结果https://samsunglabs.github.io/rome/
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
代表具有多个半透明彩色图层的场景是实时新型视图合成的流行和成功的选择。现有方法在平面或球形的规则间隔层上推断颜色和透明度值。在这项工作中,我们介绍了一种基于多个半透明层的新视图综合方法,具有场景适应的几何形状。我们的方法在两个阶段中介绍了立体对的这些表示。第一阶段从给定的一对视图中缩小了少数数据自适应层的几何形状。第二阶段为这些层的颜色和透明度值产生了新颖的视图合成的最终表示。重要的是,两个阶段都通过可差异化的渲染器连接,并以端到端的方式训练。在实验中,我们展示了所提出的方法在使用定期间隔的层上的优势,没有适应场景几何形状。尽管在渲染过程中较快的数量次数,但我们的方法也优于基于隐式几何表示的最近提出的IBRNET系统。查看https://samsunglabs.github.io/stereolayers的结果。
translated by 谷歌翻译
3D扫描是一种复杂的多级进程,它产生了由于遮挡,反射,阴影,扫描仪运动,物体表面的特定属性,对象曲线的特定属性,Imperfect重建算法等指向云完成而产生损坏部件的对象的点云。填写对象的缺失部分并获得其高质量的3D表示。现有的完成方法在学术数据集中表现良好,具有预定义的对象类和非常特定的缺陷类型;然而,它们的性能在真实的环境中下降,并在以前看不见的对象类上进一步降低。我们提出了一种在对称物体上表现良好的新颖框架,这些框架在人造环境中普遍存在。与基于学习的方法不同,所提出的框架不需要培训数据,并且能够使用例如在客户3D扫描过程中完成非关键损坏。 kinect,飞行时间或结构化光扫描仪。通过彻底的实验,我们表明拟议的框架在云完成现实世界客户扫描的点云完成时实现了最先进的效率。我们在两种类型的数据集中基准框架性能:正确增强现有的学术数据集和各种对象的实际3D扫描。
translated by 谷歌翻译